From Design to Fabrication: Developing a Conceptual Framework for Parametric Design in Complex Geometry Construction

Document Type : Research Paper

Authors

Architecture Department, Faculty of Engineering, Mattaria Branch, Helwan University, Cairo, Egypt.

Abstract

Parametric design plays a major role in the manufacture of complex geometries either in architectural or fabrication procedures. This research explores the integration of parametric design as a transformative approach for attaining complex geometries to bridge the gap between design and fabrication and its significant role in architectural design and the fabrication process. This research analyses the role of parametric design as a merging methodology that supports the entire design-to-fabrication workflow, from early-stage concepts and form-finding to structural optimization and manufacturing to produce complex geometric forms. Furthermore, it highlights the transformative possible of the workflow in enhancing precision, reducing waste, and promoting innovation in architectural expression. Thus, it is needed to understand the abilities and constraints of parametric tools accurately and evaluate their potential for effecting changes in production practices. The key finding of the research is a workflow which able to overcome the main challenges of designing and fabricating complex geometries, by adopting three phases; computational design, digital fabrication, and feedback iteration.
In conclusion, this study emphasizes the importance of developing intense frameworks to address the challenges and opportunities presented by complex geometry construction, for more efficient and creative architectural solutions.

Keywords

Main Subjects


[1] Burry, J., Sabin, J. E., Sheil, B., & Skavara, M. (Eds.). (2020). Fabricate 2020. UCL Press.‏
[2] Rusu, A. M. (2015). Geometry and Complexity in Architecture. Journal of Industrial Design and Engineering Graphics10, 59.‏
 [3] Dörfler, K., Knippers, J., Menges, A., Parascho, S., Pottmann, H., & Wortmann, T. (2023). Advances in Architectural Geometry 2023. De Gruyter.‏
 [4] Beorkrem, C. (2017). Material strategies in digital fabrication. Routledge.‏
[5] Kudeshia, P., Agowun, M. A., & Poovvancheri, J. (2024). Learning geometric complexes for 3D shape classification. Computers & Graphics133, 104119.‏
 [6] Pottmann, H., Asperl, A., & Kililan, A. (2007). Architectural geometry. Bentley Institute Press.‏
 [7] Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P., & Raynaud, J. (Eds.). (2013). Advances in Architectural Geometry 2012. Springer.
 [8] Jabi, W. (2013). Parametric design for architecture. Hachette UK.
 [9] Gu, N., Yu, R., & Behbahani, P. A. (2021). Parametric design: Theoretical development and algorithmic foundation for design generation in architecture. Handbook of the Mathematics of the Arts and Sciences.
 [10] Naboni, R., & Paoletti, I. (2015). Advanced customization in architectural design and construction. Cham Springer International Publishing.
[11] Thomsen, M. R., & Tamke, M. (2020). Design transactions. Design transactions-Rethinking information modelling for a new material age.  
[12] Li, J., Zhao, W., Li, C., Zhang, X., Deng, T., Wang, J., & Peng, J. (2025). An efficient parallel mesh generation method for finite element based analysis of large complex architecture. Computer-Aided Design.
[13] Sandak, A., Sandak, J., Brzezicki, M., & Kutnar, A. (2019). Bio-based building skin. Springer Nature.‏
[13] Ahmed, M. M., Ali, S. A., Tarek, D., Maafa, I. M., Abutaleb, A., Yousef, A., & Fahmy, M. K. (2024). Development of bio-based lightweight and thermally insulated bricks: Efficient energy performance, thermal comfort, and CO2 emission of residential buildings in hot arid climates. Journal of Building Engineering, 91, 109477.‏
[14] Ghanem, A. F., Aggour, M. M., & Fahmy, M. K. (2024). Developing a tool for meeting children’s needs through biophilic design: a combined approach of the Biophilia Interview and Connection to Nature Index–theoretical study. Open House International.‏
[15] Fahmy, M. K., Ahmed, M. M., Ali, S. A., Tarek, D., Maafa, I. M., Yousef, A., & Ragab, A. (2024). Enhancing the Thermal and Energy Performance of Clay Bricks with Recycled Cultivated Pleurotus florida Waste. Buildings14(3), 736.‏
[16] Aksamija, A. (2017). Integrating innovation in architecture Design, methods and technology for progressive practice and research. John Wiley & Sons.
[17] Fahmy, M. K., Eltaweel, A., Rizi, R. A., & Imani, N. (2024). Integrated Kinetic Fins for Western Facades in Territories with Low Solar Altitudes. Buildings13(3), 782.‏
[18] Block, P., Knippers, J., Mitra, N. J., & Wang, W. (Eds.). (2015). Advances in architectural geometry 2014. Springer.
[19] ARUP (2012) Al Bahar Towers: Innovation Award Winner, CTBUH Awards Program.
[20] Charleson, A. (2014). Structure as architecture a source book for architects and structural engineers. Routledge.
[21] Iwamoto, L. (2013). Digital fabrications architectural and material techniques. Princeton Architectural Press.
[22] https://rojkindarquitectos.com/work/tori-tori/(Access 1-1-2025)
[23] https://parametrichouse.com/bhp-pavilion/(Access 1-1-2025)
[24] Dunn, N. (2012). Digital fabrication in architecture. Laurence King Publishing.
[25] Stiny, G. (2022). Shapes of imagination: calculating in Coleridge's Magical realm. MIT Press.
[26] Elkhateeb, A., Eldakdoky, S., Fahmy, M. K., & Ibrahim, E. (2024). Sightline formulae in auditoria, review and new proposal to increase the visibility. Ain Shams Engineering Journal15(4), 103408.‏
[27] Woodbury, R. (2010). Elements of Parametric Design. Routledge.
[28] Gamal, A., Nashaat, B., Shahda, M. M., & Nosier, S. R. (2024). Ten questions concerning the integration of digital fabrication techniques into the architectural design process. Architectural Engineering and Design Management20(1), 120-149.‏
[29] Ali, S. A., Fahmy, M. K., Zouli, N., Abutaleb, A., Maafa, I. M., Yousef, A., & Ahmed, M. M. (2024). Fabrication of thermal insulation bricks using pleurotus florida spent mushroom. Materials16(14), 4905.‏
[30] Klir, G. J. (2013). Architecture of systems problem solving. Springer Science & Business Media.
[31] Achim Menges and Sean Ahlquist (Eds.). Computation Design Thinking. Wiley, 2011.
[32] Nourian, P., Azadi, S., & Oval, R. (2023). Generative design in architecture from mathematical optimization to grammatical customization. In Computational Design and Digital Manufacturing (pp. 1-43). Cham Springer International.
[33] Tedeschi, A., & Lombardi, D. (2018). The algorithms-aided design (AAD). Informed Architecture Computational Strategies in Architectural Design.
[34] Humppi, H. (2015). Algorithm-Aided Building Information Modeling Connecting Algorithm-Aided Design and Object-Oriented Design (Master's thesis).
[35] Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design and development. Research in Engineering Design, 37, 153-184.
[36] Han, Y., Zhang, K., Xu, Y., Wang, H., & Chai, T. (2023). Application of parametric design in the optimization of traditional landscape architecture. Processes, 11(2), 449.
[37] Sheil, R., Menges, A., Glynn, R., & Skavara, M. (2017). Fabricate 2017. UCL Press.
[38] Reinhardt, D., Saunders, R., & Burry, J. (Eds.). (2016). Robotic fabrication in architecture, art and design 2016. Springer.
[39] Kim, T. K., Nguyen, D. C., & Shim, C. S. (2024, March). Digital Fabrication for DfMA of a Prefabricated Bridge Pier. In Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2024: EASEC-17, Singapore (pp. 455-460). Singapore: Springer Nature.
[40] Roxas, C. L. C., Bautista, C. R., Dela Cruz, O. G., Dela Cruz, R. L. C., De Pedro, J. P. Q., Dungca, J. R., ... & Ongpeng, J. M. C. (2024). Design for manufacturing and assembly (DfMA) and design for deconstruction (DfD) in the construction industry: Challenges, trends and developments. Buildings.
[41] Tuvayanond, W., & Prasittisopin, L. (2024). Design for manufacture and assembly of digital fabrication and additive manufacturing in construction: a review. Buildings13(2).
 
[42] Touzé, S., Rauch, M., & Hascoët, J. Y. (2024). Methodology for complexity and cost comparison between subtractive and additive manufacturing processes. Journal of Intelligent Manufacturing.
[43] Niazy, D., Ashraf, M., Bodaghi, M., & Zolfagharian, A. (2024). Resilient city perspective: 4D printing in art, architecture and construction. Materials Today Sustainability, 100408.‏
[44] Aghaee, K., Li, L., Roshan, A., & Namakiaraghi, P. (2024). Additive manufacturing evolution in construction: from individual terrestrial to collective, aerial, and extraterrestrial applications. Journal of Building Engineering.
[45] Watts, A. (2019). Modern Construction Case Studies: Emerging Innovation in Building Techniques. Birkhäuser.
[46] Indrawan, S. E. (2016). Digital Fabrication, Architectural and Material Techniques Iwamoto, Lisa. International Journal of Creative and Arts Studies, 3(1).
[47] Vatandoost, M., Ekhlassi, A., Golabchi, M., Rahbar, M., & von Buelow, P. (2024). Fabrication methods of shell structures. Automation in Construction165, 105540.‏
[48] Borden, G. P., & Meredith, M. (Eds.). (2012). Matter material processes in architectural production. New York Routledge.
[49] Prasittisopin, L. (2024). How 3D printing technology makes cities smarter: a review, thematic analysis, and perspectives. Smart Cities7(6), 3458-3488.‏
[50] Haghnazar, R., Ashjazadeh, Y., Hauptman, J., & Nasir, V. (2024). A computational design integrated digital fabrication framework for mass customization in industry 5.0 manufacturing with non-standard natural materials. Results in Engineering46, 104800.‏
[51] https://bigsee.eu/new-headquarters-of-swatch-s-a-biel-bienne/ (Access8-1-2025)
[52] https://www.swatch.com/en-us/swatchhq.html(Access8-1-2025)
[53] https://www.ubm-development.com/magazin/en/beneath-the-dragons-skin(Access8-1-2025)
[54] https://www.blumer-lehmann.com/en/implement-construction-projects.html (Access8-1-2025)
[55]https://www.baublatt.ch/bauprojekte/swatch-hauptsitz-in-biel-shigeru-ban-bietet-herausforderungen(Access8-1-2025)
[56]https://www.archdaily.com/catalog/us/products/7741/free-forms-for-wood-projects-blumer lehmann/(Access8-1-2025)
[57] https://www.archdaily.com/ Bayfront (The Future of Us) Pavilion / SUTD Advanced Architecture Laboratory. (Access at30-12-2024)
[58] https://architizer.com/projects/the-future-of-us-pavilion. (Access at30-12-2024)
[59] https://parametrichouse.com/the-future-of-us-pavilion/(Access at30-12-2024)
[60]https://pda.designsingapore.org/presidents-design-award/award-recipients/2018/the-future-of-us-pavilion (Access at30-12-2024)
[61] Wortmann, T., & Tunçer, B. (2017). Differentiating parametric design Digital workflows in contemporary architecture and construction. Design Studies, 52, 173-197.
[62] Blandini, L., & Nieri, G. (2020). Kuwait International Airport Terminal 2 engineering and fabrication of a complex parametric megastructure. In FABRICATE 2020 Making Resilient Architecture. UCL Press.
[63]https://www.airport-technology.com/projects/kuwait-international-airport-new-terminal/(Access5-1-2025)
[64]https://www.autodesk.com/autodesk-university/class/Kuwait-International-Airport-Terminal-2-New-Success-Story-2019 (Access at 5-1-2025)
[65] Nieri, G., Blandini, L., & Sobek, W. (2019, October). Kuwait international airport terminal 2: Detailed design and fabrication of a large-span composite shell. In Proceedings of IASS Annual Symposia (Vol. 2019, No. 1, pp. 1-10). International Association for Shell and Spatial Structures (IASS).
[66] https://aecom.com/projects/kuwait-international-airport-terminal-2/ (Access at 5-1-2025)
[67] https://www.fosterandpartners.com/projects/kuwait-international-airport. (Access at 5-1-2025)
[68] Munro, D., Arkinstall, M., & Carfrae, T. (2018, July). Kuwait International Airport Terminal II: the development of a new form of precast composite shell. In Proceedings of IASS Annual Symposia (Vol. 2018, No. 4, pp. 1-8). International Association for Shell and Spatial Structures (IASS).
[69] https://www.mpw-kwtairport-t2.com/news/access-2/ (Access at 5-1-2025)
[70] Sadakorn, W., Prasertsuk, S., & Prasittisopin, L. (2024). Improving the structural efficiency of textured three-dimensional concrete printing wall by architectural design. Frontiers of Structural and Civil Engineering.