[1] Burry, J., Sabin, J. E., Sheil, B., & Skavara, M. (Eds.). (2020). Fabricate 2020. UCL Press.
[2] Rusu, A. M. (2015). Geometry and Complexity in Architecture. Journal of Industrial Design and Engineering Graphics, 10, 59.
[3] Dörfler, K., Knippers, J., Menges, A., Parascho, S., Pottmann, H., & Wortmann, T. (2023). Advances in Architectural Geometry 2023. De Gruyter.
[4] Beorkrem, C. (2017). Material strategies in digital fabrication. Routledge.
[5] Kudeshia, P., Agowun, M. A., & Poovvancheri, J. (2024). Learning geometric complexes for 3D shape classification. Computers & Graphics, 133, 104119.
[6] Pottmann, H., Asperl, A., & Kililan, A. (2007). Architectural geometry. Bentley Institute Press.
[7] Hesselgren, L., Sharma, S., Wallner, J., Baldassini, N., Bompas, P., & Raynaud, J. (Eds.). (2013). Advances in Architectural Geometry 2012. Springer.
[8] Jabi, W. (2013). Parametric design for architecture. Hachette UK.
[9] Gu, N., Yu, R., & Behbahani, P. A. (2021). Parametric design: Theoretical development and algorithmic foundation for design generation in architecture. Handbook of the Mathematics of the Arts and Sciences.
[10] Naboni, R., & Paoletti, I. (2015). Advanced customization in architectural design and construction. Cham Springer International Publishing.
[11] Thomsen, M. R., & Tamke, M. (2020). Design transactions. Design transactions-Rethinking information modelling for a new material age.
[12] Li, J., Zhao, W., Li, C., Zhang, X., Deng, T., Wang, J., & Peng, J. (2025). An efficient parallel mesh generation method for finite element based analysis of large complex architecture. Computer-Aided Design.
[13] Sandak, A., Sandak, J., Brzezicki, M., & Kutnar, A. (2019). Bio-based building skin. Springer Nature.
[13] Ahmed, M. M., Ali, S. A., Tarek, D., Maafa, I. M., Abutaleb, A., Yousef, A., & Fahmy, M. K. (2024). Development of bio-based lightweight and thermally insulated bricks: Efficient energy performance, thermal comfort, and CO2 emission of residential buildings in hot arid climates. Journal of Building Engineering, 91, 109477.
[14] Ghanem, A. F., Aggour, M. M., & Fahmy, M. K. (2024). Developing a tool for meeting children’s needs through biophilic design: a combined approach of the Biophilia Interview and Connection to Nature Index–theoretical study. Open House International.
[15] Fahmy, M. K., Ahmed, M. M., Ali, S. A., Tarek, D., Maafa, I. M., Yousef, A., & Ragab, A. (2024). Enhancing the Thermal and Energy Performance of Clay Bricks with Recycled Cultivated Pleurotus florida Waste. Buildings, 14(3), 736.
[16] Aksamija, A. (2017). Integrating innovation in architecture Design, methods and technology for progressive practice and research. John Wiley & Sons.
[17] Fahmy, M. K., Eltaweel, A., Rizi, R. A., & Imani, N. (2024). Integrated Kinetic Fins for Western Facades in Territories with Low Solar Altitudes. Buildings, 13(3), 782.
[18] Block, P., Knippers, J., Mitra, N. J., & Wang, W. (Eds.). (2015). Advances in architectural geometry 2014. Springer.
[19] ARUP (2012) Al Bahar Towers: Innovation Award Winner, CTBUH Awards Program.
[20] Charleson, A. (2014). Structure as architecture a source book for architects and structural engineers. Routledge.
[21] Iwamoto, L. (2013). Digital fabrications architectural and material techniques. Princeton Architectural Press.
[22] https://rojkindarquitectos.com/work/tori-tori/(Access 1-1-2025)
[23] https://parametrichouse.com/bhp-pavilion/(Access 1-1-2025)
[24] Dunn, N. (2012). Digital fabrication in architecture. Laurence King Publishing.
[25] Stiny, G. (2022). Shapes of imagination: calculating in Coleridge's Magical realm. MIT Press.
[26] Elkhateeb, A., Eldakdoky, S., Fahmy, M. K., & Ibrahim, E. (2024). Sightline formulae in auditoria, review and new proposal to increase the visibility. Ain Shams Engineering Journal, 15(4), 103408.
[27] Woodbury, R. (2010). Elements of Parametric Design. Routledge.
[28] Gamal, A., Nashaat, B., Shahda, M. M., & Nosier, S. R. (2024). Ten questions concerning the integration of digital fabrication techniques into the architectural design process. Architectural Engineering and Design Management, 20(1), 120-149.
[29] Ali, S. A., Fahmy, M. K., Zouli, N., Abutaleb, A., Maafa, I. M., Yousef, A., & Ahmed, M. M. (2024). Fabrication of thermal insulation bricks using pleurotus florida spent mushroom. Materials, 16(14), 4905.
[30] Klir, G. J. (2013). Architecture of systems problem solving. Springer Science & Business Media.
[31] Achim Menges and Sean Ahlquist (Eds.). Computation Design Thinking. Wiley, 2011.
[32] Nourian, P., Azadi, S., & Oval, R. (2023). Generative design in architecture from mathematical optimization to grammatical customization. In Computational Design and Digital Manufacturing (pp. 1-43). Cham Springer International.
[33] Tedeschi, A., & Lombardi, D. (2018). The algorithms-aided design (AAD). Informed Architecture Computational Strategies in Architectural Design.
[34] Humppi, H. (2015). Algorithm-Aided Building Information Modeling Connecting Algorithm-Aided Design and Object-Oriented Design (Master's thesis).
[35] Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design and development. Research in Engineering Design, 37, 153-184.
[36] Han, Y., Zhang, K., Xu, Y., Wang, H., & Chai, T. (2023). Application of parametric design in the optimization of traditional landscape architecture. Processes, 11(2), 449.
[37] Sheil, R., Menges, A., Glynn, R., & Skavara, M. (2017). Fabricate 2017. UCL Press.
[38] Reinhardt, D., Saunders, R., & Burry, J. (Eds.). (2016). Robotic fabrication in architecture, art and design 2016. Springer.
[39] Kim, T. K., Nguyen, D. C., & Shim, C. S. (2024, March). Digital Fabrication for DfMA of a Prefabricated Bridge Pier. In Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2024: EASEC-17, Singapore (pp. 455-460). Singapore: Springer Nature.
[40] Roxas, C. L. C., Bautista, C. R., Dela Cruz, O. G., Dela Cruz, R. L. C., De Pedro, J. P. Q., Dungca, J. R., ... & Ongpeng, J. M. C. (2024). Design for manufacturing and assembly (DfMA) and design for deconstruction (DfD) in the construction industry: Challenges, trends and developments. Buildings.
[41] Tuvayanond, W., & Prasittisopin, L. (2024). Design for manufacture and assembly of digital fabrication and additive manufacturing in construction: a review. Buildings, 13(2).
[42] Touzé, S., Rauch, M., & Hascoët, J. Y. (2024). Methodology for complexity and cost comparison between subtractive and additive manufacturing processes. Journal of Intelligent Manufacturing.
[43] Niazy, D., Ashraf, M., Bodaghi, M., & Zolfagharian, A. (2024). Resilient city perspective: 4D printing in art, architecture and construction. Materials Today Sustainability, 100408.
[44] Aghaee, K., Li, L., Roshan, A., & Namakiaraghi, P. (2024). Additive manufacturing evolution in construction: from individual terrestrial to collective, aerial, and extraterrestrial applications. Journal of Building Engineering.
[45] Watts, A. (2019). Modern Construction Case Studies: Emerging Innovation in Building Techniques. Birkhäuser.
[46] Indrawan, S. E. (2016). Digital Fabrication, Architectural and Material Techniques Iwamoto, Lisa. International Journal of Creative and Arts Studies, 3(1).
[47] Vatandoost, M., Ekhlassi, A., Golabchi, M., Rahbar, M., & von Buelow, P. (2024). Fabrication methods of shell structures. Automation in Construction, 165, 105540.
[48] Borden, G. P., & Meredith, M. (Eds.). (2012). Matter material processes in architectural production. New York Routledge.
[49] Prasittisopin, L. (2024). How 3D printing technology makes cities smarter: a review, thematic analysis, and perspectives. Smart Cities, 7(6), 3458-3488.
[50] Haghnazar, R., Ashjazadeh, Y., Hauptman, J., & Nasir, V. (2024). A computational design integrated digital fabrication framework for mass customization in industry 5.0 manufacturing with non-standard natural materials. Results in Engineering, 46, 104800.
[51] https://bigsee.eu/new-headquarters-of-swatch-s-a-biel-bienne/ (Access8-1-2025)
[52] https://www.swatch.com/en-us/swatchhq.html(Access8-1-2025)
[53] https://www.ubm-development.com/magazin/en/beneath-the-dragons-skin(Access8-1-2025)
[54] https://www.blumer-lehmann.com/en/implement-construction-projects.html (Access8-1-2025)
[55]https://www.baublatt.ch/bauprojekte/swatch-hauptsitz-in-biel-shigeru-ban-bietet-herausforderungen(Access8-1-2025)
[56]https://www.archdaily.com/catalog/us/products/7741/free-forms-for-wood-projects-blumer lehmann/(Access8-1-2025)
[57] https://www.archdaily.com/ Bayfront (The Future of Us) Pavilion / SUTD Advanced Architecture Laboratory. (Access at30-12-2024)
[58] https://architizer.com/projects/the-future-of-us-pavilion. (Access at30-12-2024)
[59] https://parametrichouse.com/the-future-of-us-pavilion/(Access at30-12-2024)
[60]https://pda.designsingapore.org/presidents-design-award/award-recipients/2018/the-future-of-us-pavilion (Access at30-12-2024)
[61] Wortmann, T., & Tunçer, B. (2017). Differentiating parametric design Digital workflows in contemporary architecture and construction. Design Studies, 52, 173-197.
[62] Blandini, L., & Nieri, G. (2020). Kuwait International Airport Terminal 2 engineering and fabrication of a complex parametric megastructure. In FABRICATE 2020 Making Resilient Architecture. UCL Press.
[63]https://www.airport-technology.com/projects/kuwait-international-airport-new-terminal/(Access5-1-2025)
[64]https://www.autodesk.com/autodesk-university/class/Kuwait-International-Airport-Terminal-2-New-Success-Story-2019 (Access at 5-1-2025)
[65] Nieri, G., Blandini, L., & Sobek, W. (2019, October). Kuwait international airport terminal 2: Detailed design and fabrication of a large-span composite shell. In Proceedings of IASS Annual Symposia (Vol. 2019, No. 1, pp. 1-10). International Association for Shell and Spatial Structures (IASS).
[66] https://aecom.com/projects/kuwait-international-airport-terminal-2/ (Access at 5-1-2025)
[67] https://www.fosterandpartners.com/projects/kuwait-international-airport. (Access at 5-1-2025)
[68] Munro, D., Arkinstall, M., & Carfrae, T. (2018, July). Kuwait International Airport Terminal II: the development of a new form of precast composite shell. In Proceedings of IASS Annual Symposia (Vol. 2018, No. 4, pp. 1-8). International Association for Shell and Spatial Structures (IASS).
[69] https://www.mpw-kwtairport-t2.com/news/access-2/ (Access at 5-1-2025)
[70] Sadakorn, W., Prasertsuk, S., & Prasittisopin, L. (2024). Improving the structural efficiency of textured three-dimensional concrete printing wall by architectural design. Frontiers of Structural and Civil Engineering.