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Abstract: In cryptography, maintaining data confidentiality and 

ensuring resilience against various attacks are of utmost significance. A 

popular classical encryption method that is well-known for its 

effectiveness and simplicity in protecting text data is the Hill cipher. The 

Hill Cipher algorithm is improved as a polygraphic substitution cipher 

based on linear algebra.  This algorithm uses a square matrix key, and its 

key matrix must be invertible. However, its susceptibility to known-

plaintext and chosen-plaintext attacks, along with key matrix constraints, 

limits its effectiveness. This paper presents an enhanced Hill cipher 

algorithm that integrates chaotic logistic maps to improve security, key 

randomness, and resistance to cryptanalytic attacks. Using the 

unpredictable nature of chaotic sequences, a dynamic key matrix is 

generated, ensuring stronger diffusion and confusion properties in 

encryption. The proposed method eliminates weaknesses associated with 

traditional hill cipher and enhances resistance to statistical and brute-

force attacks. The results of experiments and analysis of security show 

that the chaotic logistic Hill cipher significantly improves the encryption 

strength. This approach provides a robust and adaptable cryptographic 

solution for securing textual data in modern applications. 
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1. Introduction 

 

Today, considering the emergence of digital globalization, data security, and privacy have 

become significant challenges for the global research community. Given how quickly 

communication technologies and the Internet are developing, safeguarding transmitted 

information against potential attacks has become a critical and urgent priority [1]. Text 

encryption is vital in today’s digital landscape, ensuring secure communication and protecting 

sensitive data. With the increasing   prevalence of IoT, cloud computing, and digital 

communication, the risk of unauthorized access to sensitive information, such as financial 

transactions, personal data, and confidential business details, have grown significantly. 
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Researchers have created techniques, including watermarking, steganography, cryptography, 

and others, to handle this security problem and related issues [2, 3, 4]. Among them, an 

efficient approach to protecting sensitive information is the implementation of cryptography. 

Cryptography is a field of science dedicated to securing and protecting information during 

transmission. It encompasses the art and science of message transformation to guarantee 

security and resilience against unauthorized access or attacks [5, 6]. In cryptography, images 

and text are encrypted before being transmitted over the network. Cryptography consists of 

two essential steps: encryption and decryption. Through encryption, readable, plain text data 

is changed into ciphertext, an encoded format that only authorized users can access. 

Decryption, using a specific key, converts the encoded data back to its original form. This 

mechanism ensures private data is kept safe and shielded from unwanted access [7, 8]. Over 

time, cryptography has been thoroughly studied and extensively utilized across diverse 

domains to ensure data security, including artificial intelligence [9], data transmission [10, 

11], information confrontation [12], and image encryption [13-16]. Matrix theory is a crucial 

mathematical technique that has been effectively used in cryptography and is frequently used 

in algorithms of cryptographic, such as the Playfair cipher [17, 18], the Knapsack cipher [19, 

20], the Chaos cipher [21, 22], the Hill cipher [23, 24]. Plaintext, encryption, decryption, key, 

and ciphertext are their primary components. 

The Hill Cipher, introduced by Lester S. Hill, is a common example of classical symmetric 

encryption algorithms, and its fundamental concept is the use of linear combinations in 

matrices [25, 26]. Because of its affordability, dependability, and simplicity of use, the Hill 

Cipher is frequently employed in data security, particularly for encrypting network 

transmission data [27, 28]. At the moment, image encryption has made good use of Hill 

Cipher technology [29, 30, 31, 32] and secure fiber optic communication systems [33]. Thus, 

the study of the Hill Cipher is very important for data security. This method of encryption, 

the Hill cipher, encrypts and decrypts data using a square matrix as the key. To decrypt the 

Hill Cipher, the inverse of the key matrix is needed. However, not all matrices are invertible, 

making them unsuitable for use as key matrices. The encrypted text cannot be deciphered if 

the key matrix is not invertible [34]. The Hill Cipher is resistant to statistical and brute-force 

attacks; however, its linear nature structure and static key design render it susceptible to 

known ciphertext and plaintext attacks [35]. Despite its simplicity, these 

limitations compromise its security against such known plaintext attacks. Chaotic systems 

have gained attention in cryptography for their randomness, unpredictability, and sensitivity 

to initial conditions [36]. With properties like sensitivity to initial conditions, pseudo-random 

behavior, and wide key space, chaotic maps are well-suited for dynamic key generation and 

data scrambling, making them highly effective in cryptographic applications [37- 40].  Among 

these maps, Logistic maps, in particular, have gained attention due to their simplicity and 

effectiveness. However, there is limited work on leveraging chaotic systems to enhance text 

encryption as well as with Hill cipher specifically, as most research in cryptography focuses 

on image encryption. However, the Hill cipher’s linear matrix transformation poses a major 

drawback, as it fails to completely obscure image characteristics, especially in images with 

strong correlations between adjacent pixels. Additionally, both the original Hill cipher and its 
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variants rely on an invertible key matrix for decryption, which may not always exist, creating 

a potential issue. The uniformity of color intensities and high redundancy further contribute 

to this limitation, making the Hill cipher unsuitable for image encryption. 

To improve the Hill cipher’s robustness and security, this paper introduces an improved 

algorithm that integrates the chaotic properties of the logistic map—including high sensitivity, 

unpredictability, and an extensive key space—into its algebraic foundation. The proposed 

Improved Hill Cipher (IHC) dynamically generates key matrices for each plaintext block, 

using the logistic map to control the en- crypton process. By incorporating this chaotic 

element, the encryption becomes more complex and robust, significantly improving 

resistance to attacks and creating a secure hybrid encryption scheme. The following are this 

paper’s primary contributions: 

1. Combining the Logistic Chaotic Map with the classical Hill Cipher improves the encryption 

frame- work’s security and resistance to cryptanalysis. 

2. The Logistic Map generates dynamic key matrices for each plaintext block, ensuring high 

sensitivity to initial conditions and mitigating vulnerabilities associated with static keys. 

3. The incorporation of chaotic maps strengthens the Hill Cipher, making it more resilient 

against known plaintext and pattern-based attacks. 

4. The paper evaluates the security of the Improved Hill Cipher through various analyses, 

illustrating its advantages over the traditional Hill Cipher. 

The rest of the paper is structured as follows: Section 2 provides an overview of the relevant 

works. Section 3 presents the essential preliminary material addressed in this work. Section 4 

delineates the suggested encryption methodology. Section 5 discusses the analysis of security 

and experimental results for the proposed algorithm in this paper. Section 6 includes the 

conclusion. 

 

2. Related Work 

 

This section examines the current literature on the Hill Cipher and its enhancements. It has 

been extensively studied in the last few years. For instance, Acharya suggested a technique 

for using an involutory matrix to create a self-invertible matrix [41]. It effectively satisfies 

the requirement that an integer self-invertible matrix’s inverse matrix stays integral, 

because of the characteristic that if matrix A is self-inverse, then A = A−1. Rahman et al. 

[42] introduced an enhanced Hill cipher variant (Hill++). It further acts as an encryption 

key by producing a random matrix key depending on earlier blocks. This approach prevents 

vulnerabilities like all-zero plaintext blocks. By integrating the Hill cipher with the affine 

cipher, their method significantly strengthens resistance against attacks. Agrawal and Gera 

[43] proposed an encryption method that first applies the Hill cipher algorithm to generate 

ciphertext in numerical form. These numerical values are then mapped to points on an 

Elliptic Curve Cryptography (ECC) system using scalar multiplication. While this approach 

enhances security, it also increases computational complexity, as scalar multiplication is 
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time-intensive. Considering that complicated problems can be solved by evolutionary 

algorithms, Agarwal [44] was the first to combine genetic algorithms with Hill cipher to 

expedite the Hill key matrix search. Sharma and Chirgaiya [45] introduced a solution to 

address the decryption of the Hill cipher issue when the key matrix is non-invertible. They 

proposed an offset adjustment approach, where an offset value of 1 is applied if the matrix 

determinant is zero, and -1 is used if the determinant is negative. This method ensures that 

the matrix remains invertible for decryption. 

Siahaan [46] utilized a genetic algorithm to generate an unimodular matrix as the key for 

encryption. The capacity of this method to generate numerous key matrices at once is a 

significant benefit, enhancing flexibility and security in encryption. Khan [47] proposed a 

method for key generation by deriving a matrix that is orthogonal to a given plane to handle 

cases where the key matrix contains fractions. Chen et al. [48] developed the Random Key 

Matrix Generation Method, an interesting approach that generates Hill key matrices of high 

order at random using the modular multiplicative inverse of a triangular matrix. They show 

that RKMGM extends key matrix selection from finite fields to rational number fields with 

no restrictions on matrix order. In [49], Acharya proposed a key matrix generation 

technique based on involution, enumeration, and self-iteration to produce separate keys for 

distinct encryption blocks. This greatly improved resistance against a variety of attacks. 

SHC [50] employs a dynamic key matrix to thwart known plaintext-ciphertext attacks 

(KPCA) by randomly permuting the rows and columns of the master key matrix. HCM-H 

[51] furthermore uses a dynamic key matrix created by applying a one-way hash function 

on an integer that the sender chooses at random.  

The authors of [52] presented an improved Hill cipher method, known as HC-PRE, which 

employs pseudo-random eigenvalues to generate dynamically changing key matrices. 

Essaid et al. [53] introduced a chaotic image encryption scheme known as VHC-CIES, 

which is based on a modified version of the Hill cipher. This approach enhances security 

by incorporating a Hill cipher variant along with three improved one-dimensional chaotic 

maps. A.V.N. Krishna and K. Madhuravani [54] proposed a modified Hill cipher that 

incorporates a randomized approach. In this method, the Hill cipher output is randomized 

to provide numerous ciphertext variations for the same plaintext once the plaintext is split 

up into blocks of equal size. However, this technique remains susceptible to known 

plaintext attacks. P.N. Lone and D. Singh [55] suggested using the H´enon map in 

conjunction with the affine hill cipher to transmit RGB images securely. Lone et al. [56] 

presented a brand-new RGB image encryption method that combines Affine Hill 

cryptography and chaos theory. Their work primarily explores advancements and 

enhancements in the Hill cipher technique. Hasoun et al. [57] successfully incorporated the 

asymmetric cryptographic algorithm into the Hill cryptographic algorithm, enhancing its 

security and effectiveness. Jin et al.  [58] introduced a novel time-varying key dynamic Hill 

cipher (DHC) technique. This approach replaces the static matrix key of the traditional Hill 

cipher (THC) with a time-varying matrix key, aiming to augment the security of the 

conventional Hill cipher. To increase the classic Hill cipher’s (THC) security and expand 

its application in medical image encryption, Xi et al. [59] suggested the Arnold scrambling 
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approach for a new dynamic Hill cipher (DHCAST). Unlike the THC, the DHCAST utilizes 

a time- varying matrix as its secret key, significantly enhancing its security. The proposed 

DHCAST is effectively applied to encrypt medical images. 

 

3. Preliminaries Relevant Knowledge 

 

This section provides the background information needed to comprehend this paper, including 

the Classical Hill Cipher and Logistic map. 

 

3.1 Classical Hill Cipher 

Lester Hill, a mathematician, developed the symmetric block cipher technique known as the 

Hill cipher in 1929. The key matrix used for ciphering and deciphering should be shared and 

used by both the sender and the recipient. Given that evolutionary algorithms are capable of 

solving complex issues, the Hill cipher encrypts plaintext by dividing it into fixed-size blocks 

and transforming each block into ciphertext using a matrix multiplication approach. The core 

concept of the Hill Cipher involves using a key matrix to encrypt and decrypt messages. The 

key matrix must be invertible modulo 26 (for the English alphabet) to allow decryption. Here 

are the key elements of the Hill Cipher: 

Key Matrix: The encryption key is a square matrix K of size m × m, where m is the block 

size (i.e., the number of letters per block). This technique fundamentally involves 

assigning a numerical value to each letter; the entries in the matrix are integers 

corresponding to the letters in the alphabet. For instance, a = 0, b = 1, . . ., z = 25. 

Subsequently, the plaintext (message) is partitioned into blocks of uniform size m, 

determined by the dimensions of the key matrix m × m. If the block size is two (P2×1), 

the key matrix (K2×2) must be 2 × 2 in dimensions. 

Encryption: The key matrix K is multiplied by the plaintext matrix P to encrypt the message, 

which contains the numerical values of the plaintext letters. Multiplication is carried 

out modulo 26 to ensure that the result stays within the range of the alphabet. 

Specifically, for a plaintext block P and a key matrix K, the encryption is given by: 

 

𝐶 =  𝐾 ·  𝑃 𝑚𝑜𝑑 26 (1) 

 

Where C is the ciphertext matrix (the encrypted message), K is the key matrix, and P is the 

plaintext matrix. 

Decryption: To decrypt the ciphertext message C, the recipient must calculate the key 

matrix inverse (K−1), where K · K−1 = I. Here, I am the identity matrix. The ciphertext matrix 

C is then multiplied by the inverse of the key matrix modulo 26 to recover the plaintext P 

(original message) using the equation: 

𝑃 =  𝐾⁻¹ ·  𝐶 𝑚𝑜𝑑 26 (2) 

 

Where P is the recovered plaintext (original message). After performing the matrix 

multiplication and modulo 26 operations, the result is the ciphertext matrix C. The resulting 

ciphertext is a sequence of numbers that can be converted back into letters. 
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3.2 Chaotic Logistic Map 

The Logistic Map is a simple yet thoroughly researched one-dimensional chaotic map 

frequently used in chaos-based cryptography [60]. It is valued for its straightforward structure, 

strong chaotic behavior, unpredictability, and low cross-correlation. Representing a nonlinear 

dynamic system, the Logistic Map exhibits complicated, chaotic behavior and is expressed 

by the equation: 

𝑥𝑛+1 = 𝑟. 𝑥𝑛(1 − 𝑥𝑛) (3) 

 

where the system variable at iteration n is 𝑥𝑛, 𝑥0 is the chaotic map’s initial state, and 𝑥𝑛 ∈ 

(0, 1) is the chaotic sequence that is produced. The control parameter r is within the range 

r ∈ (0, 4). The logistic map demonstrates chaotic behavior when r is in the range of [3.57, 

4]. The bifurcation diagram in Fig. 1 illustrates the logistic map’s chaotic range of [3.57, 

4]. 

 
Figure 1: A classic diagram of a logistic map. 

 

 

4. The Proposed Algorithm 
 

This section introduces the proposed method that merges the chaotic properties of the Logistic 

Map with the block encryption mechanism of the Hill Cipher to strengthen cryptographic 

security. In the proposed encryption algorithm, the key matrix used in the Hill cipher is 

dynamically generated using the chaotic Logistic Map, a fundamental requirement of the Hill 

cipher is that the key matrix must be invertible modulo n (where n is the modulus, e.g., 26). 

A matrix is considered invertible under modulo arithmetic only if its determinant is both non-

zero and coprime with the modulus, that is gcd(det(K), n) = 1, which is then applied to the 

Hill Cipher for both encryption and decryption. To ensure this condition is always met, the 

system includes a validation step: 

1. After generating the key matrix from the Logistic Map, its determinant is calculated. 
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2. The system checks whether the determinant satisfies the invertibility condition modulo 

n. 

3. if the matrix is not invertible (i.e., gcd(det(K), n) ≠1 it is discarded. 

4. The Logistic Map then continues with new iterations to regenerate a new matrix. 

5. This process repeats until a valid, invertible key matrix is produced 

 This enhancement not only boosts security but also improves the overall efficiency of the 

system compared to the traditional Hill Cipher method. The proposed algorithm consists of 

two main phases: encryption and decryption. The encryption and decryption processes can be 

represented visually in Fig. 2 and Fig. 3, respectively. For simplicity and clarity, Table 1 

summarizes the notation used in the encryption algorithm. Both phases leverage the dynamic 

key matrix generated by the Logistic Map to ensure high sensitivity to initial conditions and 

improved cryptographic strength. 

 

 
Figure 2: A diagram of the Encryption process 

 

4.1 The Encryption Process 

1. Input the Plaintext: Convert the plaintext into its numerical representation. 

2. Preprocess the Plaintext: Divide the plaintext into fixed-size blocks that match the 

dimensions of the key matrix. 

3. Key Generation: 

Initialize the Logistic Map: Choose an initial value 𝒙𝟎 (seed) and a control parameter r 

for the Logistic Map. Ensure x0 is in the range (0, 1) and r is within the chaotic range 

(e.g., 𝟑. 𝟓𝟕 ≤  𝒓 ≤  𝟒) 

Generate the Dynamic Key Matrix: Iterate the Logistic Map to obtain a sequence of 

chaotic numbers. Scale and discretize the chaotic values to generate the elements of 

an invertible key matrix. For example: 
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𝐾 =  ⌊𝑥𝑖 × 100⌋ 𝑚𝑜𝑑 𝑛, (4) 

 

Where n is the modular base (e.g., 26 for alphabets), and ⌊ D ⌋ uses the floor function to 

find the largest integer that is less than or equal to D, where D is a real number. 

 

 
Figure 3: A diagram of the Decryption process 

 

Table 1: Notation for encryption Algorithm 

Symbol Description Notes 

x0 Initial value for Logistic Map 0< x0 <1 

r Control parameter for Logistic Map 3.57 ≤ r ≤ 4 

xn Logistic sequence value at step n Used to generate matrix elements 

K Key matrix used in Hill Cipher Must be invertible modulo 26 

k-1 The inverse Key Matrix Used to decrypt ciphertext 

P Plaintext vector Divided into blocks 

C Ciphertext vector Encrypted output 

det(k) Determinant of key matrix K Used to check invertibility 

 

4. Encrypt Each Block: Multiply each plaintext block with the dynamic key matrix: 

 

𝐶 = (𝐾 ·  𝑃) 𝑚𝑜𝑑 𝑛, (5) 

 

where P is the plaintext block, K is the key matrix, C is the resulting ciphertext block, 

and n = 26 for alphabets. 

5. Generate the Ciphertext: Combine all ciphertext blocks and convert them back to 

characters. 
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4.2 The Decryption Process 

1. Input the Ciphertext: Convert the received ciphertext into its numerical 

representation. 

2. Reinitialize the Logistic Map: Use the same initial value 𝑥₀  and control parameter r 

as in the encryption process to regenerate the dynamic key matrix. 

3. Generate the Dynamic Key Matrix: Repeat the key matrix generation process using 

the Logistic Map to ensure synchronization with the encryption phase. 

4. Calculate the Inverse Key Matrix: Compute the modular inverse of the key matrix K 

to be used for decryption: 

𝐾⁻¹ ⋅  𝐾 ≡  𝐼 𝑚𝑜𝑑 𝑛, (6) 

where I am the identity matrix. 

5. Decrypt Each Block: Multiply each ciphertext block with the inverse 

key matrix: 

 

𝑃 =  (𝐶 ⋅  𝐾⁻¹) 𝑚𝑜𝑑 𝑛 (7) 

 

Where P is the plaintext block, C is the ciphertext block, and 𝐾−1is the inverse key 

matrix. 

6. Reconstruct the Plaintext: Combine all decrypted blocks and convert them back to 

characters. 

 

4.3 Illustrative Example 

Let the plaintext be:” HOPE”. 

Step 1: Substitute Each Letter with Its Corresponding Number 

● H = 7, O = 14, P = 15, E = 4. 

● Plaintext block (P1): [7, 14]. 

● Plaintext block (P2): [15, 4]. 

Step 2: Initialize the Logistic Map and Generate the Dynamic Key Matrix 

⮚ To Encrypt the First Block (P1): 

● Initial value (𝑥₀): 0.7820 

● Control parameter (r): 3.5029 

●  Generate 4 chaotic numbers by iterating the Logistic Map using Equation (3): 

𝑥0 = 0.7820, 

𝑥1 = 3.5029 · 0.7820 · (1 − 0.7820) = 0.5971, 

𝑥2 = 3.5029 · 0.5971 · (1 − 0.5971) = 0.8427, 

𝑥3 = 3.5029 · 0.8427 · (1 − 0.8427) = 0.4643. 

● Scale and discretize the chaotic values into integers between 0 and 25: 

K11 = ⌈0.7820 · 25⌉ = 19, K12 = ⌈0.8427 · 25⌉ =21, 

 K21 = ⌈0.5971 · 25⌉ = 14, K22 = ⌈0.4643 · 25⌉ =11. 

● Dynamic key matrix (𝐾1): 

𝐾1= (
19 21
14 11

) 

⮚ To Encrypt the Second Block (P2): 
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● Initial value (𝑥₀): 0.7735 

●  Control parameter (r): 3.9853 

● Following the same steps as above, the dynamic key matrix (𝐾2) is: 

𝐾2=(
19 20
17 13

)  

 

Step 3: Encryption and Generate the Ciphertext 

        The encryption formula is: 

𝐶 = (𝐾 ·  𝑃) 𝑚𝑜𝑑 26. 

⮚ Encrypting the First Block (P1): 

● Substitute values: 

𝑃1=   [7   14 ]  ,  𝐾1 =  (
19 21
14 11

) 

●  Perform matrix multiplication: 

 

𝐶1 =  . [7   14 ]   𝑚𝑜𝑑 26 =  [427   252 ]    𝑚𝑜𝑑 26 =[11   18 ]

● Ciphertext vector (𝐶1): [11, 18]. 

● Convert numbers back to letters: 11 = L, 18 = S. 

● Ciphertext:” LS”. 

⮚ Encrypting the Second Block (P2): 

• Substitute values: 

𝑃2 =[15   4 ]  ,  𝐾2  = (
19 20
17 13

) 

 

• Perform matrix multiplication and modular reduction: 

 

𝐶2 =  . [15   4 ]   𝑚𝑜𝑑 26  =[1   21 ] 

 

• Ciphertext vector (C2): [1, 21]. 

• Convert numbers back to letters: 1 = B, 21 = V. 

• Ciphertext:” BV”. 

Full Encrypted Ciphertext:” LSBV”. 

Step 4: Decryption and Generate the Plaintext 

To decrypt the ciphertext, you must use the same matrices that were used for encryption, 

and calculate its modular inverse. The modular inverse K−1 satisfies: 

𝐾⁻¹ ⋅  𝐾 ≡  𝐼 𝑚𝑜𝑑 26, 

    where I am the identity matrix. Using matrix algebra and modular arithmetic. 

 

⮚ Decrypt the first ciphertext block C1 using the decryption formula: 

 

𝑃1  =  (𝐶1 ⋅  𝐾1
−1) 𝑚𝑜𝑑 26 

• The inverse of K1 is: 
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𝐾1
−1 = [17    − 23   − 24        1    ]  𝑚𝑜𝑑 26  = [17      3    2       1  ] 

 

• Substitute values: 

                                          C1  =   [11   18 ]  ,   𝐾1
−1 = [17      3    2       1  ] 

 

• Perform the matrix multiplication: 

𝑃1 = . [17      3    2       1  ]  mod 26 = [241   40 ]   mod 26 = [7   14 ] 

• Convert the numbers back to letters: 7 = H, 14 = O. 

• Recovered plaintext block:” HO”. 

⮚  Applying the same steps to decrypt the second ciphertext block C2: 

          To decrypt c2, use the same key matrix K2 = [𝟏𝟗      𝟐𝟎    𝟏𝟕       𝟏𝟑  ] 

• The inverse of K2 is: 

𝐾2
−1 = [13    − 16   − 11      23   ]  𝑚𝑜𝑑 26  = [13      10   15       23  ] 

 

• Substitute the values

                                                 C2  =   [1   21 ]  ,   𝐾2
−1 = [13      10    15       23  ] 

 

• Perform the matrix multiplication: 

      𝑃2 =  [1   21 ] . [13      10    15       23  ]  mod 26 =  [15   4 ] 

 

• Convert the numbers back to letters: 15 = P, 4 = E. 

• Recovered plaintext block:” PE” 

Full plaintext:” HOPE". Experimental Analysis 

 

5. Experimental Analysis 

 

We tested the suggested algorithm to see how well it worked through experiments analyzing 

its security and resistance to cryptographic attacks. The encryption and decryption tests were 

conducted on a laptop with an Intel i5-1065G7 processor (1.30 GHz) and 8 GB RAM, using 

a MATLAB (R2016a) implementation of the algorithm. 

 

5.1 Key Space Analysis 

The total number of keys that can be used for encryption and decryption is defined by a 

cryptographic system’s key space. A larger key space makes the cipher more resistant to 

brute-force attacks. Brute- force assaults can be prevented more successfully with a bigger 

key space. Determining the size of the key space is essential for assessing the resistance to 

brute-force attacks.  For the Improved Hill Cipher with Logistic Map, the size of the key space 

is mainly determined by factors such as the seed value (𝑥0) and the control parameter (𝑟) of 

the logistic map. Both require high precision and are represented as real numbers. Matrix size 

𝑛 ×  𝑛 is another key factor, where increasing n exponentially increases the key space. 
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Assuming that each parameter is represented with double precision up to 16 decimal places, 

this results in 1016 possible values for each parameter, yielding a key space size of 1016 × 1016 

= 1032. With matrix size 𝑛 ×  𝑛, the total key space of the cryptographic algorithm becomes 

n2 × 1032, which far exceeds the suggested 2100. Therefore, the key space of this approach is 

sufficiently large, and the suggested technique can successfully fend off brute-force attacks. 

In the traditional Hill cipher, the key is a static matrix of size n × n with entries in modulo 26 

(assuming alphabetic encryption), and the matrix must be invertible. This constraint 

significantly reduces the total number of valid keys, resulting in a limited and countable key 

space. Table 2 presents a comparative analysis of the key space between the proposed 

algorithm and related existing algorithms. 

 

Table 2: Comparative Analysis of Key Space. 

Criteria 
Traditional Hill 

Cipher 
Affine-Hill + Chaos Proposed Algorithm 

Key Type 
Static (fixed matrix 

used for all blocks) 

Adds affine transformation & 

chaos-based key seed, but 

static over the full message 

Dynamic (new matrix 

generated for each plaintext 

block) 

Key Source 
Invertible matrix over 

mod 26 

Hill matrix + chaotic seed & 

affine c 

Derived from chaotic 

logistic map values (x0, r) 

Key Space 

Size 
Limited and finite 

~26ⁿ² × chaotic seed range × 

affine offset 
~ [(x₀ × r × 26ⁿ²)] ^B  

Key Reuse 
The same key is reused 

for all blocks 
Moderate 

Each block uses a unique 

key 

Predictability 

Moderate (fixed 

structure can be 

guessed with enough 

data) 

Moderate (depends on seed) 
Very low (high randomness 

and unpredictability due to 

chaos) 

Security 

Improvement 

Basic level of 

confusion and 

diffusion 

Improved over classical Hill Enhanced security due to 

dynamic key variation and 

chaotic behavior 

 

5.2 Key Sensitivity Analysis 

Secure cryptographic systems must exhibit key sensitivity, ensuring that even a small 

modification to the encryption key leads to significantly different ciphertexts than those 

produced by the original key. This characteristic protects the cipher from differential attacks, 

where attackers attempt to deduce key information by analyzing the variations in ciphertext 

resulting from minor changes to the key.  To evaluate key sensitivity in the Improved Hill 

Cipher with Logistic Map, a plaintext message “HELLOO” was encrypted using two keys 

that differed only slightly in the seed value (x0) of the logistic map. For this purpose, 𝑥0  in 

the initial conditions was modified to x0 + 1.0 × 10−12. The control parameter (𝑟) was kept 

constant, while the seed values were set as follows: 
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Experiment 1: 

• Key 1: x0 = 0.34500000000000, r = 3.5025 

• Slight key modification: x0 = 0.345000000000001, r = 3.5025 

Both keys were used to encrypt the plaintext, and the corresponding ciphertexts were 

compared. The Hamming distance is the number of positions where the corresponding 

characters differ between two ciphertexts of the same length. It was calculated to measure 

the sensitivity to the key change as follows: 

 

𝑑𝐻(𝐶1, 𝐶2) = |{𝑖 ∈ {1,2,3, … … . 𝑛}: 𝑎𝑖 ≠ 𝑏𝑖}|, (8) 

 

Where C1 = a1a2a3 . . . an and C2 = b1b2b3 . . . bn are the ciphertexts formed by the original 

key and the slightly modified key, respectively. 

The results of the two ciphertexts generated using the slightly different keys were: 

• C1:” TXFLEO” 

• C2:” AEQWSC” 

The Hamming distance, 𝑑𝐻 (C1, C2), between these two ciphertexts was equal to 6. 

 

Experiment 2: 

• Key 1: x0 = 0.4994000000000000, r = 3.7074 

• Slight key modification: x0 = 0.4994000000000001, r = 3.7074 

Encrypt the same plaintext using two slightly different keys and then compare the 

results. 

• Plaintext: “ENCRYPTION” 

• C1:” YTGDYXYWGV” 

• C2:” YIIMMACPGC” 

The Hamming distance, dH (C1, C2), between these two ciphertexts was equal to 8. 

 Since the original plaintext cannot be deciphered and there are significant variations in the 

cipher- texts as a result of modest key changes, it is evident that the algorithm is extremely 

sensitive to these modifications. This indicates that all characters in the ciphertext changed 

when the key was altered slightly. The key sensitivity analysis confirms that the Improved 

Hill Cipher with Logistic Map is highly sensitive to small changes in the key. This ensures 

that even minimal variations in the key produce mostly distinct ciphertexts, significantly 

enhancing the cipher’s resistance to differential cryptanalysis and strengthening its overall 

security. 

 

Experiment 3: 

We conducted a numerical experiment to compare the proposed algorithm with existing 

algorithms in term of key sensitivity analysis. The evaluation included a numerical example 

using the Hamming distance, and the results are presented in Table 3. 

• Plaintext: “ENCRYPTION” 

• Key1 = [3, 3; 1, 5]. 

• Slight key modification = [3, 3; 1, 6]. 
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Table 3: Comparison of key sensitivity. 

Algorithm Plaintext C1 C2 
     Hamming 

      distance 

Traditional 

Hill Cipher 
 

ENCRYPTION 

ZRFJNVDHDB ZEFANKDPDO 5 

Affine-Hill + 

Chaos 
YEOMXRHKLN YRODXGHSLA 5 

Proposed  YTGDYXYWGV YIIMMACPGC 8 

 

These results confirm that the proposed offers the highest resistance to differential and key-

related attacks, making it the most secure among the compared algorithms. The high 

Hamming distance validates its robustness in practical cryptographic applications. The 

Traditional Hill Cipher showed limited sensitivity to key changes, while the Affine Hill 

Cipher with Chaos improved sensitivity through chaotic perturbation. The Improved Hill 

Cipher with Logistic Map exhibited full sensitivity, producing entirely different ciphertext 

from minor key changes, demonstrating strong resistance to key-based attacks. 

 

5.3 Entropy Analysis 

Entropy is a crucial parameter for assessing a cryptographic system’s security since it 

quantifies the ciphertext’s randomness or unpredictability. Higher entropy signifies stronger 

security, as it indicates that the ciphertext conceals any patterns or traces of the plaintext. 

Greater randomness and unpredictability in the ciphertext are reflected in a high entropy level, 

which makes it extremely resilient to statistical analysis and cryptographic attacks. 

The entropy of the ciphertext was computed using the formula: 

 

𝐻(𝑠) = − ∑  

𝑁

𝑖=1

  𝑃(𝑠𝑖)𝑙𝑜𝑔2𝑃(𝑠𝑖)  (9) 

 

Where S is the set of characters in the ciphertext, N denotes the total number of unique 

characters, and 𝑃(𝑠𝑖) represents the probability of occurrence of 𝑠𝑖 in the ciphertext. 

The ideal information entropy value for a 26-character alphabet is log2 (26) = 4.7004 ≈ 4.7. 

This represents the maximum entropy for a 26-character alphabet, indicating optimal 

unpredictability and security when each character has an equal probability of occurrence. If 

the entropy is lower, it suggests patterns or biases in the data, which could weaken security. 

The higher the information entropy, the closer it is to the ideal value.  To evaluate the entropy 

of ciphertexts, we experimented by generating random plaintexts of varying sizes (e.g., 50, 

100, 500, 1000, 5000, and 10000 characters) and encrypting them using the proposed 

algorithm. The entropy of the resulting ciphertexts was then calculated using the entropy 

formula. The results of the information entropy calculations are recorded in Table 4. As seen 

in Table 4, the computed entropy of the ciphertexts increases with the size of the plaintext, 

approaching the ideal information entropy value of 4.7. This indicates that the algorithm 

exhibits good randomness and security.  
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Additionally, Table 5 gives data in comparison with other algorithms. Our designed 

algorithm has the highest average value of information entropy in ciphertexts. Therefore, the 

algorithm designed in this paper has good encryption and can effectively resist information 

entropy attacks. 

 

Table 4: Information entropy of ciphertexts of varying sizes. 

Size (characters) Ciphertext Entropy 

50 4.3329 

100 4.5501 

500 4.6633 

1000 4.6883 

5000 4.6919 

10000 4.6928 

 

Table 5: Comparative analysis of information entropy. 

Size 

(characters) 

Ciphertext Entropy 

Traditional Hill Cipher Affine-Hill + Chaos Proposed 

50 3.8522 3.7345 4.3329 

100 4.0431 4.2784 4.5501 

500 4.5930 4.6094 4.6633 

1000 4.6479 4.6510 4.6883 

5000 4.6850 4.6904 4.6919 

10000 4.6918 4.6915 4.6928 

 

The entropy values of ciphertexts with varying sizes are illustrated in Fig. 4. Generally, 

entropy tends to increase with the size of the ciphertext, as larger ciphertexts display higher 

levels of randomness. For sufficiently large ciphertexts, the entropy stabilizes, indicating that 

a high level of randomness and unpredictability is routinely achieved by the encryption 

technique, regardless of the ciphertext size. The graph typically reveals a rising trend for 

smaller ciphertext sizes, followed by a plateau as the entropy reaches its peak, highlighting 

the algorithm’s effectiveness in generating highly random and secure ciphertexts. 

 

5.4 Correlation Analysis 

In cryptographic systems, the correlation between plaintext and ciphertext is a pivotal element 

in assessing the security and resilience of the encryption technique. A strong encryption 

algorithm should produce ciphertext that is statistically independent of the plaintext, ensuring 

that no information about the plaintext can be inferred from the ciphertext. Correlation 

analysis is a widely used method to evaluate this relationship. 

This study evaluates the effectiveness of the Improved Hill Cipher (IHC), enhanced with a 

Logistic Map, by analyzing the correlation between plaintext and ciphertext. Randomly 

generated plaintexts of varying sizes were used to assess the cipher’s ability to disrupt 

statistical relationships and ensure robust encryption. The degree of correlation between 

plaintext and ciphertext is estimated by the correlation coefficient, where correlation values 
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close to 0 indicate minimal similarity and no linear correlation, demonstrating effective 

encryption. The correlation coefficient is determined as follows: 

 

 
Figure 4: Information entropy of ciphertexts of varying sizes 

 

𝑟 =
∑  𝑛

𝑖=1   (𝑃𝑖 − 𝜇𝑃)(𝐶𝑖 − 𝜇𝐶),

√∑  𝑛
𝑖=1   (𝑃𝑖 − 𝜇𝑃)2 ∑  𝑛

𝑖=1   (𝐶𝑖 − 𝜇𝐶)2
, 

(10) 𝜇𝑃 =
1

𝑛
∑  

𝑛

𝑖=1

 𝑃𝑖 , 

𝜇𝐶 =
1

𝑛
∑  

𝑛

𝑖=1

 𝐶𝑖 , 

 

Where 𝑛 denotes the total number of elements in plaintext and ciphertext, Pi and Ci are the 

individual values of plaintext and ciphertext at position i, respectively, and µP and µC are 

the mean (average) values of the plaintext and ciphertext sequences, respectively.  This 

analysis was conducted on randomly generated plaintexts of varying sizes to 

comprehensively assess the encryption scheme’s performance. In this study, plaintexts of 

different lengths (e.g., 50, 100, 500, 1000, 5000, and 10000 characters) were randomly 

generated. The plaintext values ranged from 0 to 25, corresponding to alphabetic 

representations, and the corresponding ciphertexts were obtained by applying the improved 

Hill Cipher algorithm. 

The correlation coefficients were calculated and analyzed for different plaintext sizes to 

evaluate how effectively the link between plaintext and ciphertext is broken by the 

encryption algorithm. By plotting these coefficients, trends are observed, highlighting the 
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algorithm’s ability to minimize correlations. The results of this analysis are depicted in 

Figure 5. As plaintext size increases, the correlation coefficient decreases toward zero, 

indicating minimal linear dependence. Across all tested sizes, the near-zero coefficients 

confirm the ciphertext’s statistical independence from the plaintext. This trend suggests that 

the encryption algorithm performs better with larger plaintext sizes, as the chaotic key 

matrix has more data to randomize.  In addition, experiments were conducted by encrypting 

randomly generated plaintexts of varying lengths (e.g., 50, 100, 500, 1000, 5000, and 10000 

characters) using both the proposed method and existing algorithms, each applied 10 times. 

Table 6 presents the average correlation coefficient values from these experiments, 

demonstrating that the results of the proposed method are competitive with those of 

previous approaches. 

 

 
Figure 5: Correlation coefficient between plaintext and ciphertext of varying 

sizes. 

 

Table 6: Comparison of correlation coefficients. 

Size 

(characters) 

Correlation Coefficient 

Traditional Hill Cipher Affine-Hill + Chaos Proposed 

50 -0.3421 0.3852 0.0626 

100 0.0792 -0.1009 -0.0795 

500 0.1620 0.0153 0.0291 

1000 -0.0120 0.0326 -0.0051 

5000 -0.0194 0.0480 0.0065 

10000 0.0258 0.0044 0.0026 

 

The correlation analysis results reveal consistently low coefficients across all plaintext 

sizes, confirming the method’s effectiveness in disrupting statistical relationships between 

plaintext and ciphertext. This demonstrates the algorithm’s ability to introduce randomness, 
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obscure plaintext patterns, and ensure ciphertext independence, making it highly resistant 

to pattern-based and statistical attacks. These findings affirm the practical applicability of 

the proposed scheme for securing sensitive data against advanced cryptographic threats. 

 

5.5 Chosen-plaintext attack (CPA)  

An experimental strategy was used to evaluate the suggested Enhanced Hill Cipher's 

resistance against Chosen Plaintext Attacks (CPA). An adversary can encrypt specific 

plaintexts in a CPA and examine the ciphertexts to try to identify trends or information about 

keywords. This study's encryption approach creates a unique key matrix for every plaintext 

block dynamically using a chaotic logistic map. This technique seeks to improve 

cryptographic security by removing ciphertext repetition. 

⮚ Experimental Setup: 

● Block Size: 3 characters 

● Plaintext: " BBBBBBCCCCCCABCABC " 

Table 7 shows the ciphertexts obtained by encrypting three identical plaintext blocks using 

dynamically generated keys. Each block was encrypted with a unique key derived from a 

different iteration of the logistic map. 

 

Table 7: CPA Security Analysis Using Dynamic Key Generation 

BLOCK Plaintext Ciphertext 

1 BBB KHP 

2 BBB RLA 

3 CCC WEO 

4 CCC EMI 

5 ABC YPU 

6 ABC IRM 

 

The resulting ciphertexts are entirely distinct even though the plaintexts are the same. This 

behavior validates the cipher's resistance to pattern analysis and is a direct result of the 

dynamic key generation technique.  The Hamming distance between blocks of the ciphertext 

was computed in order to assess the variance further. High diffusion was indicated by the 

average of two out of three characters being different between any two blocks. Non-linearity 

and sensitivity to starting parameters are introduced via the use of chaotic key generation. 

This guarantees that different ciphertexts are produced by repeating plaintext blocks. 

Unpredictable and non-reusable ciphertext patterns Because fixed key usage is eliminated, 

the cipher resists CPA. These results show that the resilience of the Hill cipher to CPA is 

greatly increased by the dynamic key generation technique. We conducted an additional 

numerical experiment to compare the proposed algorithm with other existing methods. The 

results, summarized in Table 8, demonstrate that the improved Hill Cipher enhanced with the 

Logistic Map provides significantly better resistance to Chosen-Plaintext Attacks than the 

compared algorithms. While traditional Hill Cipher is vulnerable to chosen-plaintext attacks 

(CPA) because it uses a fixed key matrix identical plaintext blocks always produce the same 
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ciphertext, revealing exploitable patterns. The Affine-Hill Cipher with a chaotic bias 

improves security by adding randomness, but still applies the same key across all blocks, 

allowing some patterns to persist. In contrast, the Hill Cipher with a dynamically generated 

key matrix using the Logistic Map provides strong CPA resistance by regenerating a unique 

key for each block, eliminating ciphertext repetition and significantly enhancing security. 

 

Table 8: Comparative CPA analysis of the proposed Dynamic-Key Hill Cipher to other 

Hill-Based algorithms. 

BLOCK Plaintext 
Ciphertext 

Traditional Hill Cipher Affine-Hill + Chaos Proposed  

1 BBBB GHGH ZTDZ NOKR 

2 BBBB GHGH TDZT TSBF 

3 BBSS GHEW DLAY QWHN 

4 BBSS GHEW QAOT ZNVY 

5 SBSB FPFP MDPT NNDM 

6 SBSB FPFP EUTN HWAB 

 

5.6 Ciphertext-Only Attack (COA) 

The premise of a Ciphertext-Only Attack (COA) is that the attacker is only in possession of 

the encrypted ciphertexts and is unaware of the encryption key or the original plaintext. This 

kind of attack looks for ciphertext statistical patterns or repeats that could result in partial or 

complete decryption. The repeating of ciphertext blocks when identical plaintext blocks are 

encrypted with the same key is a frequent flaw in symmetric encryption techniques. 

A new key matrix is created for every encryption block in the suggested encryption scheme, 

which improves on the Hill cipher by utilizing chaotic logistic map-based dynamic key 

generation. Even when the plaintext comprises identical or recurring blocks, this dynamic 

behavior is intended to stop ciphertexts from repeating. 

⮚ Experimental Setup: 

● Block Size: 2 characters 

● Plaintext: A repeated sequence "BBBBBBBB" 

The objective of the experiment was to observe whether the same plaintext blocks would 

result in repeated ciphertexts or not. Table 9 shows the ciphertext output for each block of the 

same plaintext "BB". 

 

Table 9: COA Security Analysis Using Dynamic Key Generation 

BLOCK Plaintext Ciphertext 

1 BB ZI 

2 BB SJ 

3 BB PS 

4 BB PD 

The findings clearly show that, despite the fact that the plaintext content was the same for 

every block ("BB"), every identical plaintext block produced a distinct ciphertext output. This 
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illustrates how ciphertext repetition—a significant flaw in conventional Hill cipher 

implementations—is successfully removed by the chaotic key generation process. 

The system is therefore extremely resistant to attacks of this kind since attackers using 

statistical analysis based on repeated ciphertexts (as in COA) would not discover any 

exploitable patterns. 

 

5.7 Known-plaintext attack (KPA)  

To demonstrate how dynamic key generation can effectively thwart known-plaintext attacks, 

we offer a numerical example utilizing an improved Hill cipher that incorporates a logistic 

map to produce a distinct key matrix for every plaintext block. 

⮚ Experimental Setup: 

● Block Size: 2 characters 

● Plaintext: “HOPE " 

● Logistic map parameters: 𝒙₀ = 0.7820 & r = 3.5029    for P1 

𝒙₀ = 0.7735 & r = 3.9853    for P2 

With the help of the above illustrative example, Table 5 summarizes the findings for the given 

plaintext. 

 

Table 10: Dynamic Key Generation for each plaintext block 

Plaintext Plaintext block Key Matrix Ciphertext block Ciphertext 

HO P1= [7, 14] 𝐾1 = (
19 21
14 11

) C1= [11, 18] LS 

PE P2= [15, 4] 𝐾2 = (
19 20
17 13

) C2 = [1, 21] BV 

 

Assume the attacker knows plaintext-ciphertext pairs as: 

• P1= [7, 14], C1= [11, 18], 

• P2= [15, 4], C2 = [1, 21]. 

An attacker having access to both plaintext and ciphertext for just one block may employ 

linear algebra to recover its key. From 𝐶1 = (𝐾1 ·  𝑃1) 𝑚𝑜𝑑 26, K1 is recovered as in Table 

10. This recovered key, however, would be useless for decrypting other blocks because each 

block step uses a different matrix based on different chaotic sequences. This behavior 

demonstrates that, even if portions of the message are revealed, the dynamic nature of key 

creation successfully avoids the entire message being revealed.  

 

5.8  Randomness Test 

A cipher's randomness is a crucial component that makes an algorithm more unpredictable, 

secure against attacks, and random. When creating a cryptographically secure algorithm, this 

characteristic must be considered. A collection of tests known as the National Institute of 

Standards and Technology Statistical Test Suite, or NIST-STS, is used to confirm this 

randomness and assess the security offered by cryptographic methods [61]. To be considered 

as truly random, and therefore a successful test, the computed P-value of a specific byte 

sequence must be greater than or equal to 0.01. The first test, the Frequency test which checks 
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if the number of 0s and 1s in the binary sequence is approximately the same. The Runs Test 

was then used to determine whether the value oscillations between subblocks were either too 

fast or too  Slowly, the longest consecutive subsequence in the supplied data was confirmed 

using the Longest Run of Ones in a Block method.  To evaluate the randomness of the 

ciphertext generated by the proposed encryption method (Hill Cipher with Logistic Map and 

dynamic key generation), two different lengths of the cipher are used during the test to ensure 

randomness, the first one is 300 bytes long and the second one is 500 bytes long. Table 11 

below shows the result of the randomness test. 

 

Table 11: Randomness Test 

Statistical Test P-value(x) P-value(Y) Result 

Frequency 0.54029 0.22067 pass 

Runs Test 0.74896 0.67233 pass 

longest Run of 1s in Blocks 0.70113 0.60525 pass 

 

The results consistently demonstrated strong randomness across both input sizes. For the 300-

byte ciphertext, all key tests — including the Monobit Test, Runs Test, and Longest Run of 

Ones- confirmed the encrypted output's statistical randomness produced p-values above 0.01. 

Similarly, for the 500-byte ciphertext, the test outcomes remained robust. All p-values 

exceeded 0.01, indicating no degradation in randomness as the message size increased. These 

results validate the proposed algorithm's resistance to statistical attacks and its ability to 

produce secure and unpredictable ciphertexts across different plaintext sizes. 

 

5.9 Avalanche Effect 

The Avalanche Effect measures how a small change in the plaintext (such as flipping a single 

character) causes significant and unpredictable changes in the ciphertext. To evaluate the 

Avalanche effect across different encryption algorithms, an experiment was conducted using 

a fixed plaintext input. A single character in the plaintext was altered, and the resulting 

ciphertexts from each algorithm were compared. The percentage of changed bits or characters 

was measured to assess each algorithm's sensitivity to minor input changes, where Table 12 

represents the obtained results of the Avalanche effect experiment. This analysis was applied 

to the Traditional Hill Cipher, the Affine Hill Cipher with Chaos, and the Hill Cipher with a 

Logistic Map using a dynamic key per block. 

Plaintext 1 = 'HELLOWORLD' 

Plaintext 2 = 'HELLOMORLD' 

 

These results demonstrate that the Traditional Hill Cipher provides weak diffusion due to its 

fixed key, while the Affine-Hill Cipher with Chaos enhances security through non-linearity 

but still relies on static parameters. In contrast, the Hill Cipher with a Logistic Map achieves 

the strongest avalanche effect by generating dynamic keys for each block, ensuring better 

diffusion and greater resistance to cryptanalysis. 
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Table 12: Comparison of Avalanche effect. 

Encryption 

Algorithm 
C1 C2 

Hamming 

distance 

Avalanche 

Effect  

Traditional Hill 

Cipher 
HFOZEQPMQD HFOZAIPMQD 2 20.00% 

Affine-Hill + Chaos QERDIABDTZVO QERTAQBDTZVO 3 25.00% 

Proposed  DIRFKMXMTB XPGZUMRZWF 9 90.00% 

 

5.10 Ablation Study 

The ablation study is crucial for evaluating the contribution of each component in our hybrid 

cryptographic system. This experiment quantitatively assesses the roles of the Hill cipher and 

the logistic map by analyzing their impact on encryption strength, we examine three 

configurations: (A) the classical Hill cipher with a fixed key, (B) a Hill cipher with a static 

key generated from a logistic map, and (C) the proposed method using block-wise dynamic 

keys derived from logistic map outputs with block-dependent seeds. This systematic 

comparison highlights the individual and combined effectiveness of each component in 

enhancing overall security. Experiments were conducted by encrypting two plaintexts, where 

the results are presented in Table 13. 

Plaintext 1 = ‘LIFE’ 

Plaintext 2 = ‘LIVE’ 

 

Table 13: Results of ablation study. 

Encryption Algorithm Ciphertext 1 Ciphertext 2 
Avalanche Effect 

(%) 

Traditional Hill Cipher FHBD FHXT 50.00% 

Hill + Static Logistic Key LKNC LKHU 50.00% 

Hill Cipher + Logistic map 

(Dynamic Key Generation) 
DHFC XPPO 100.00% 

 

These results of ablation study confirm that both the chaotic key component and dynamic key 

generation mechanism play essential roles in achieving strong cryptographic properties. The 

Hill cipher alone is inadequate, while even static chaos offers only limited gains. The 

combination, as implemented in our proposed system, ensures a high level of security, 

diffusion, and statistical randomness. 

 

5.11 Runtime Test 

Runtime testing (measured in seconds) is performed to evaluate how quickly an algorithm 

executes in this case; encryption compared to alternative methods. A lower runtime indicates 

faster execution. We used 100,000 randomly generated characters as plaintext, encrypted 

them using the proposed algorithm and other comparison algorithms, and executed each 

encryption process 10 times. The average encryption time was then computed and is presented 

in Table 14. The Classic Hill Cipher, with no additional modifications, achieved the fastest 

performance, with an average execution time of 0.0044 seconds.  
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Table 14: Average runtime encryption process. 

 
Classic Hill 

Cipher 

Affine Hill Cipher 

with Chaos 

Proposed 

Algorithm 

Average Runtime in 

Seconds 
0.1825 3.9039 15.0353  

 

 

6. Conclusions 

 

In this paper, we proposed an Improved Hill Cipher (IHC) that integrates the logistic chaotic 

map to enhance the security and efficiency of the classical Hill Cipher. By utilizing the 

dynamic nature of the logistic map for key generation, the IHC improves the cipher’s 

resistance to attacks such as known- plaintext attacks, which typically exploit the linearity of 

the original Hill Cipher. Through the evaluation of the cipher’s performance in terms of 

entropy, correlation analysis, and resistance to various attacks, we demonstrated that the 

proposed IHC offers a more robust and secure encryption method. The integration of chaotic 

maps introduces unpredictability and a larger key space, contributing to stronger 

cryptographic security while maintaining computational efficiency. 

Future work could focus on further enhancing the IHC by exploring the use of other chaotic 

maps, such as the Arnold Cat Map or Henon Map, to compare their impact on the security 

and performance of the cipher. Additionally, optimizing the algorithm for different types of 

data (e.g., images or videos) and conducting performance tests on larger datasets could help 

evaluate its scalability. Moreover, implementing hybrid encryption schemes combining the 

IHC with other advanced encryption techniques may lead to even stronger cryptographic 

solutions 
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