[1] M. Tusar and B. Sarker, "Spare parts control strategies for offshore wind farms: A critical review and comparative study," WIND ENGINEERING, vol. 46, pp. 1629-1656, 2022-05-03 2022, doi: 10.1177/0309524X221095258.
[2] T. Lucht, V. Alieksieiev, T. Kämpfer, and P. Nyhuis, "Spare Parts Demand Forecasting in Maintenance, Repair & Overhaul," in Proceedings of the Conference on Production Systems and Logistics, 2022, pp. 525-534, doi: 10.15488/12179.
[3] N. Kontrec and S. Panic, "Spare Parts Forecasting Based on Reliability," 2017.
[4] A. A. Syntetos, J. E. Boylan, and J. D. Croston, "On the categorization of demand patterns," Journal of the Operational Research Society, vol. 56, no. 5, pp. 495-503, May 2005, doi: 10.1057/palgrave.jors.2601841.
[5] Ç. Pinçe, L. Turrini, and J. Meissner, "Intermittent demand forecasting for spare parts: A Critical review," Omega-International Journal of Management Science, vol. 105, Dec 2021, Art no. 102513, doi: 10.1016/j.omega.2021.102513.
[6] S. Zhang, K. Huang, and Y. Yuan, "Spare Parts Inventory Management: A Literature Review," Sustainability, vol. 13, p. 2460, 02/25 2021, doi: 10.3390/su13052460.
[7] P. Jiang, Y. B. Huang, and X. Liu, "Intermittent demand forecasting for spare parts in the heavy-duty vehicle industry: a support vector machine model," International Journal of Production Research, vol. 59, no. 24, pp. 7423-7440, Dec 2021, doi: 10.1080/00207543.2020.1842936.
[8] S. F. Faghidian, M. Khashei, and M. Khalilzadeh, "Improving intermittent demand forecasting based on data structure," Journal of Engineering Research, vol. 9, no. 1, Mar 2021, doi: 10.36909/jer.v9i1.8667.
[9] M. Negmeldin, M. Heshmat, and A. Eltawil, "A SYSTEM DYNAMICS APPROACH FOR STRATEGIC PLANNING OF CONSUMER ELECTRONICS INDUSTRY IN DEVELOPING COUNTRIES: THE CASE OF THE TELEVISION MANUFACTURING INDUSTRY IN EGYPT," SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, vol. 32, no. 2, pp. 133-149, 2021-08-01 2021, doi: 10.7166/32-2-2468.
[10] G. Q. Zhang, B. E. Patuwo, and M. Y. Hu, "Forecasting with artificial neural networks: The state of the art," International Journal of Forecasting, vol. 14, no. 1, pp. 35-62, Mar 1998, doi: 10.1016/s0169-2070(97)00044-7.
[11] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," Bulletin of Mathematical Biology, vol. 52, no. 1, pp. 99-115, 1990/01/01/ 1990, doi: 10.1016/S0092-8240(05)80006-0.
[12] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science (Washington D C), vol. 313, no. 5786, pp. 504-507, Jul 28 2006, doi: 10.1126/science.1127647.
[13] B. A. D. Menezes, D. D. Braga, B. Hellingrath, and F. B. D. Neto, "An Evaluation of Forecasting Methods for Anticipating Spare Parts Demand," 2015 Latin America Congress on Computational Intelligence (La-Cci), 2015.
[14] N. Kourentzes, "Intermittent demand forecasts with neural networks," International Journal of Production Economics, vol. 143, no. 1, pp. 198-206, May 2013, doi: 10.1016/j.ijpe.2013.01.009.
[15] C. Xiang, S. Q. Ding, and T. H. Lee, "Geometrical interpretation and architecture selection of MLP," Ieee Transactions on Neural Networks, vol. 16, no. 1, pp. 84-96, Jan 2005, doi: 10.1109/tnn.2004.836197.
[16] R. S. Gutierrez, A. O. Solis, and S. Mukhopadhyay, "Lumpy demand forecasting using neural networks," International Journal of Production Economics, vol. 111, no. 2, pp. 409-420, Feb 2008, doi: 10.1016/j.ijpe.2007.01.007.
[17] F. Lolli, R. Gamberini, A. Regattieri, E. Balugani, T. Gatos, and S. Gucci, "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, vol. 183, pp. 116-128, Jan 2017, doi: 10.1016/j.ijpe.2016.10.021.
[18] D. J. C. MacKay, "Bayesian Interpolation," Neural Computation, vol. 4, pp. 415-447, 1992.
[19] M. Z. Babai, A. Tsadiras, and C. Papadopoulos, "On the empirical performance of some new neural network methods for forecasting intermittent demand," Ima Journal of Management Mathematics, vol. 31, no. 3, pp. 281-305, Jul 2020, doi: 10.1093/imaman/dpaa003.
[20] A. R. S. Parmezan, V. M. A. Souza, and G. Batista, "Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model," Information Sciences, vol. 484, pp. 302-337, May 2019, doi: 10.1016/j.ins.2019.01.076.
[21] D. Kiefer, F. Grimm, M. Bauer, and C. van Dinther, Demand Forecasting Intermittent and Lumpy Time Series: Comparing Statistical, Machine Learning and Deep Learning Methods. 2021.
[22] S. Mukhopadhyay, A. O. Solis, and R. S. Gutierrez, "The Accuracy of Non-traditional versus Traditional Methods of Forecasting Lumpy Demand," Journal of Forecasting, vol. 31, no. 8, pp. 721-735, Dec 2012, doi: 10.1002/for.1242.
[23] M. R. Amin-Naseri, B. R. Tabar, and Ieee, "Neural network approach to lumpy demand forecasting for spare parts in process industries," in International Conference on Computer and Communication Engineering, Kuala Lumpur, MALAYSIA, May 13-15 2008, 2008, pp. 1378-1382, doi: 10.1109/iccce.2008.4580831. [Online]. Available: ://WOS:000259601400276
[24] M. Rosienkiewicz, "Artificial Intelligence Methods in Spare Parts Demand Forecasting," Logistics and Transport, vol. 2013, 01/01 2013.
[25] M. Şahin, R. Kizilaslan, and Ö. Demirel, "Forecasting Aviation Spare Parts Demand Using Croston Based Methods and Artificial Neural Networks," vol. 15, pp. 1-21, 01/01 2013.
[26] K. N. Amirkolaii, A. Baboli, M. K. Shahzad, and R. Tonadre, "Demand Forecasting for Irregular Demands in Business Aircraft Spare Parts Supply Chains by using Artificial Intelligence (AI)," Ifac Papersonline, vol. 50, no. 1, pp. 15221-15226, 2017, doi: 10.1016/j.ifacol.2017.08.2371.
[27] M. Rosienkiewicz, "Accuracy Assessment of Artificial Intelligence-Based Hybrid Models for Spare Parts Demand Forecasting in Mining Industry," Information Systems Architecture and Technology, Isat 2019, Pt Iii, vol. 1052, pp. 176-187, 2020, doi: 10.1007/978-3-030-30443-0_16.
[28] H. Abbasimehr, M. Shabani, and M. Yousefi, "An optimized model using LSTM network for demand forecasting," Computers & Industrial Engineering, vol. 143, May 2020, Art no. 106435, doi: 10.1016/j.cie.2020.106435.
[29] A. Muhaimin, D. D. Prastyo, H. H. S. Lu, and Ieee, "Forecasting with Recurrent Neural Network in Intermittent Demand Data," 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence 2021), pp. 802-809, 2021, doi: 10.1109/Confluence51648.2021.9376880.
[30] M. Pacella and G. Papadia, "Evaluation of deep learning with long short-term memory networks for time series forecasting in supply chain management," Procedia CIRP, vol. 99, pp. 604-609, 2021/01/01/ 2021, doi: 10.1016/j.procir.2021.03.081.
[31] D. T. Wiyanti, I. Kharisudin, A. B. Setiawan, and A. K. Nugroho, "Machine-learning algorithm for demand forecasting problem," Journal of Physics: Conference Series, vol. 1918, no. 4, p. 042012, 2021/06/01 2021, doi: 10.1088/1742-6596/1918/4/042012.
[32] K. K. Chandriah and R. V. Naraganahalli, "RNN / LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting," Multimedia Tools and Applications, vol. 80, no. 17, pp. 26145-26159, Jul 2021, doi: 10.1007/s11042-021-10913-0.
[33] R. Carbonneau, R. Vahidov, and K. Laframboise, "Machine Learning-Based Demand Forecasting in Supply Chains," International Journal of Intelligent Information Technologies, vol. 3, no. 4, pp. 40-57, Oct-Dec 2007, doi: 10.4018/jiit.2007100103.
[34] M. Hoffmann, R. Lasch, and J. Meinig, "Forecasting Irregular Demand Using Single Hidden Layer Neural Networks," Logistics Research, vol. 15, 07/15 2022, doi: 10.23773/2022_6.
[35] S. Punia and S. Shankar, "Predictive analytics for demand forecasting: A deep learning-based decision support system," Knowledge-Based Systems, vol. 258, p. 109956, 2022/12/22/ 2022, doi: 10.1016/j.knosys.2022.109956.
[36] R. V. Joseph, A. Mohanty, S. Tyagi, S. Mishra, S. K. Satapathy, and S. N. Mohanty, "A hybrid deep learning framework with CNN and Bi-directional LSTM for store item demand forecasting," Computers & Electrical Engineering, vol. 103, Oct 2022, Art no. 108358, doi: 10.1016/j.compeleceng.2022.108358.
[37] I. Shafi et al., "Spare Parts Forecasting and Lumpiness Classification Using Neural Network Model and Its Impact on Aviation Safety," Applied Sciences-Basel, vol. 13, no. 9, Apr 2023, Art no. 5475, doi: 10.3390/app13095475.
[38] J. D. Kim, T. H. Kim, and S. W. Han, "Demand Forecasting of Spare Parts Using Artificial Intelligence: A Case Study of K-X Tanks," Mathematics, vol. 11, no. 3, Feb 2023, Art no. 501, doi: 10.3390/math11030501.
[39] L. L. Fan, X. Liu, W. T. Mao, K. Yang, and Z. Y. Song, "Spare Parts Demand Forecasting Method Based on Intermittent Feature Adaptation," Entropy, vol. 25, no. 5, May 2023, Art no. 764, doi: 10.3390/e25050764.
[40] M. Ifraz, A. Aktepe, S. Ersöz, and T. Çetinyokus, "Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet," Journal of Engineering Research, vol. 11, no. 2, Jun 2023, Art no. 100057, doi: 10.1016/j.jer.2023.100057.
[41] G. Zhang, Y. Xia, and M. Xie, "Intermittent demand forecasting with transformer neural networks," ANNALS OF OPERATIONS RESEARCH, vol. 339, no. 1-2, pp. 1051-1072, 2023-06-23 2024, doi: 10.1007/s10479-023-05447-7.
[42] B. Choi and J. Suh, "Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining Techniques and Managerial Features from the Case of South Korea," Sustainability, vol. 12, p. 6045, 07/28 2020, doi: 10.3390/su12156045.
[43] M. Ifraz, S. Ersöz, A. Aktepe, and T. Çetinyokus, "Sequential predictive maintenance and spare parts management with data mining methods: a case study in bus fleet," JOURNAL OF SUPERCOMPUTING, vol. 80, no. 15, pp. 22099-22123, 2024-06-20 2024, doi: 10.1007/s11227-024-06297-1.
[44] N. J. van Eck and L. Waltman, "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, vol. 84, no. 2, pp. 523-538, 2010/08/01 2010, doi: 10.1007/s11192-009-0146-3.
[45] F. Lolli, R. Gamberini, A. Regattieri, E. Balugani, T. Gatos, and S. Gucci, "Single-hidden layer neural networks for forecasting intermittent demand," Int. J. of Prod. Econ., vol. 183, pp. 116-128, Jan 2017, doi: 10.1016/j.ijpe.2016.10.021.
[46] R. S. Gutierrez, A. O. Solis, and S. Mukhopadhyay, "Lumpy demand forecasting using neural networks," Int. J. of Prod. Econ., vol. 111, no. 2, pp. 409-420, Feb 2008, doi: 10.1016/j.ijpe.2007.01.007.
[47] R. J. Hyndman and A. B. Koehler, "Another look at measures of forecast accuracy," International Journal of Forecasting, vol. 22, no. 4, pp. 679-688, 2006, doi: 10.1016/j.ijforecast.2006.03.001.
[48] A. A. Syntetos and J. E. Boylan, "The accuracy of intermittent demand estimates," International Journal of Forecasting, vol. 21, no. 2, pp. 303-314, Apr-Jun 2005, doi: 10.1016/j.ijforecast.2004.10.001.
[49] S. Kim and H. Kim, "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, vol. 32, no. 3, pp. 669-679, 2016/07/01/ 2016, doi: 10.1016/j.ijforecast.2015.12.003.
[50] M. A. El-Sharief, O. Salah, and M. Heshmat, "ANFIS and regression-based ANOVA for attribute and variable prediction: a case of quality characteristics in the cement bags industry," in International Journal of Industrial and Systems Engineering, 2023, vol. 44, 3 ed., pp. 336-350, doi: 10.1504/IJISE.2023.132283.