Abdel Aziz, Y., El Malky, A. (2025). Effect of Silicate Fume -Based Activating Solution on Mechanical Properties of Fly Ash/Silica Fume Geopolymer Concrete. JES. Journal of Engineering Sciences, 53(6), 248-273. doi: 10.21608/jesaun.2025.383265.1506
Yasmin Hefni Abdel Aziz; Abeer El Malky. "Effect of Silicate Fume -Based Activating Solution on Mechanical Properties of Fly Ash/Silica Fume Geopolymer Concrete". JES. Journal of Engineering Sciences, 53, 6, 2025, 248-273. doi: 10.21608/jesaun.2025.383265.1506
Abdel Aziz, Y., El Malky, A. (2025). 'Effect of Silicate Fume -Based Activating Solution on Mechanical Properties of Fly Ash/Silica Fume Geopolymer Concrete', JES. Journal of Engineering Sciences, 53(6), pp. 248-273. doi: 10.21608/jesaun.2025.383265.1506
Abdel Aziz, Y., El Malky, A. Effect of Silicate Fume -Based Activating Solution on Mechanical Properties of Fly Ash/Silica Fume Geopolymer Concrete. JES. Journal of Engineering Sciences, 2025; 53(6): 248-273. doi: 10.21608/jesaun.2025.383265.1506
Effect of Silicate Fume -Based Activating Solution on Mechanical Properties of Fly Ash/Silica Fume Geopolymer Concrete
1Civil Engineering Department, Faculty of Engineering, Modern University for Technology & Information, Cairo, Egypt
2Civil Engineering Department, Faculty of Engineering, Modern University for Technology & Information, Cairo, Egypt
Abstract
This study introduces a novel approach by entirely substituting commercial Soduim Silicate (Na₂SiO₃) with silica fume (SF), an industrial by-product, to create economical and eco-friendly GC. Fly ash (FA) was partially substituted with SF at proportions of 20%, 25%, 30%, and 35% of the total binder weight to assess its impact on mechanical performance. The alkaline activator solution was employed at 30%, 35%, and 40% of binder weight, with different SF/NaOH ratios (0.75, 1.5, and 2.0) to enhance the activation process. Treated rubber fibers (0.3% by binder weight) were included to improve ductility. The workability and mechanical properties were assessed using slump, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests. Test results indicated that higher SF replacements diminished workability and strength, with a 25% substitution yielding optimal results. The SF-based activator demonstrated comparable strength to traditional methods, attaining optimal performance at an SF/NaOH ratio of 1.5. The inclusion of rubber fibers enhanced the elastic modulus by 10.8%. Microstructural analysis using SEM and EDX confirmed the formation of a denser matrix with fewer cracks and improved bonding. This research presents a viable alternative to commercial activators and proposes a sustainable GC mix design utilizing industrial by-products, contributing to more eco-friendly construction materials.
[1] Davidovits, J., 1991. Geopolymer: inorganic polymer new materials. J. Therm. Anal. 37, 1633e1656.
[2] A. Rastogi and V. K. Paul, “A critical review of the potential for fly ash utilization in construction-specific applications in India,” Environ. Res. Eng. Manag., vol. 76, no. 2, pp. 65–75, 2020. https://erem.ktu.lt/index.php/erem/article/view/25166.
[3] C. Jangam, D. B. Pannaskar, and P. R. Pujari, “Review on Production and Utilization of Fly Ash: An Indian Perspective,” Int. Educ. Res. J., vol. 10, no. 4, Apr. 2024. https://ierj.in/journal/index.php/ierj/article/view/3386ierj.in
[4] D. Das and P. K. Rout, “Synthesis, characterization and properties of fly ash‑based geopolymer materials,” J. Mater. Eng. Perform., vol. 30, pp. 3213–3231, 2021.
[5] Z. Zheng and P. Deng, “Mechanical and fracture properties of slag/steel slag-based geopolymer fully recycled aggregate concrete,” Constr. Build. Mater. vol. 413, Art. no. 134533, Jan. 2024. doi:10.1016/j.conbuildmat.2023.134533. https://doi.org/10.1016/j.conbuildmat.2023.134533.
[6] M. Heshmat, I. Amer, F. Elgabbas, and M. A. Khalaf, “Effect of binder and activator composition on the characteristics of alkali-activated slag-based concrete,” Sci. Rep., vol. 14, Art. no. 13502, 2024. Doi: 10.1038/s41598-024-63214-5. https://doi.org/10.1038/s41598-024-63214-5.
[7] W. Huang and H. Wang, “Formulation development of metakaolin geopolymer with good workability for strength improvement and shrinkage reduction,” J. Cleaner Prod., vol. 434, Art. no. 140431, Jan. 2024. doi:10.1016/j.jclepro.2023.140431. https://doi.org/10.1016/j.jclepro.2023.140431.
[8] Z. Sun, Q. Tang, B. S. Xakalashe, X. Fan, M. Gan, X. Chen, Z. Ji, X. Huang, and B. Friedrich, “Mechanical and environmental characteristics of red mud geopolymers,” Constr. Build. Mater. vol. 321, Art. no. 125564, Feb. 2022. doi:10.1016/j.conbuildmat.2021.125564. https://doi.org/10.1016/j.conbuildmat.2021.125564.
[9] S. Mabroum, A. Moukannaa, A. El Machi, Y. Taha, M. Benzaazoua, and R. Hakkou, “Mine wastes based geopolymers: A critical review,” Cleaner Eng. Technol., vol. 1, Art. no. 100014, Dec. 2020. doi:10.1016/j.clet.2020.100014. https://doi.org/10.1016/j.clet.2020.100014.
[10] L. N. Assi, K. Carter, E. Deaver, and P. Ziehl, “Review of availability of source materials for geopolymer/sustainable concrete,” J. Cleaner Prod., vol. 263, Art. no. 121477, 2020. doi:10.1016/j.jclepro.2020.121477. https://doi.org/10.1016/j.jclepro.2020.121477.
[11] M. Amran, S. Debbarma, and T. Ozbakkaloglu, “Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties,” J. Cleaner Prod., vol. 263, Art. no. 121477, 2020. doi:10.1016/j.jclepro.2020.121477. https://doi.org/10.1016/j.jclepro.2020.121477.
[12] M. Niu, P. Zhang, J. Guo, and J. Wang, “Effect of municipal solid waste incineration fly ash on the mechanical properties and microstructure of geopolymer concrete,” Gels, vol. 8, no. 6, Art. no. 341, 2022. Doi: 10.3390/gels8060341. https://doi.org/10.3390/gels8060341.
[13] P. Pavithra, M. S. Reddy, P. Dinakar, B. H. Rao, B. K. Satpathy, and A. N. Mohanty, “A mix design procedure for geopolymer concrete with fly ash,” J. Cleaner Prod., vol. 133, pp. 117–125, 2016. doi:10.1016/j.jclepro.2016.05.044. https://doi.org/10.1016/j.jclepro.2016.05.044.
[14] Ismail Luhar & Salmabanu Luhar (2022), A Comprehensive Review on Fly Ash‑Based Geopolymer, Journal of Composites Science 6(8):219.
[16] M. Verma, K. Upreti, P. Vats, S. Singh, P. Singh, N. Dev, D. K. Mishra, and B. Tiwari, “Experimental analysis of geopolymer concrete: a sustainable and economic concrete using the cost estimation model,” Adv. Mater. Sci. Eng., vol. 2022, Art. No. 7488254, 16 pp., 2022. doi:10.1155/2022/7488254. https://doi.org/10.1155/2022/7488254.
[17] A. I. Abdullah, W. R. Abdallah, M. A. Pyram, M. A. Khalaf, M. A. M. Ali, and A. O. Bamousa, “Eco‑sustainable use of industrial wastes as cement‑partial alternate in concrete composition,” Adv. Civ. Eng., to be published 2025.
[18] N. K. K. Lee and H. K. Lee, “Improved reactivity of fly ash–slag geopolymer by the addition of silica fume,” Adv. Mater. Sci. Eng., vol. 2016, Art. No. 2192053, 2016. doi:10.1155/2016/2192053. https://doi.org/10.1155/2016/2192053.
[19] W. Yang, Y. Zhang, Q. Li, et al., “Recent advances in fly ash based geopolymers: Structures, activators, and durability aspects,” ACS Omega, vol. 6, no. 7, pp. 4782–4800, 2021. doi:10.1021/acsomega.1c00582.
[20] P. Chindaprasirt, P. Paisitsrisawat, and U. Rattanasak, “Strength and resistance to sulfate and sulfuric acid of ground fluidized bed combustion fly ash–silica fume alkali‑activated composite,” Adv. Powder Technol., vol. 25, no. 3, pp. 1087–1095, 2014. doi:10.1016/j.apt.2014.02.007. https://doi.org/10.1016/j.apt.2014.02.007.
[21] N. K. Lee, G. H. An, K. T. Koh, and G. S. Ryu, “Improved reactivity of fly ash–slag geopolymer by the addition of silica fume,” Adv. Mater. Sci. Eng., vol. 2016, Art. No. 2192053, 2016. doi:10.1155/2016/2192053. https://doi.org/10.1155/2016/2192053.
[22] Ö. Ergeshov, S. Örklemez, A. Ketema, et al., “Influence of silica fume on the mechanical and microstructural properties and life cycle assessment of fly ash based geopolymer mortar,” Arab. J. Sci. Eng., vol. 50, no. 4, 2025.
[23] Adak, D.; Sarkar, M.; Mandal, S. Effect of nano-silica on strength and durability of fly ash based [23] D. Adak, M. Sarkar, and S. Mandal, “Effect of nano‑silica on strength and durability of fly ash–based geopolymer mortar,” Constr. Build. Mater. vol. 70, pp. 453–459, 2014. doi:10.1016/j.conbuildmat.2014.07.093. https://doi.org/10.1016/j.conbuildmat.2014.07.093
[24] A. N. Sadiq, M. A. M. Ariffin, M. K. Anwar, H. S. Lee, and J. K. Singh, “Optimization and utilization of waste fly ash and silica fume based eco‑friendly geopolymer mortar using response surface methodology,” in Proc. 7th Malaysia–Japan Joint Int. Conf. 2022, IOP Conf. Ser.: Earth Environ. Sci., vol. 1144, Art. no. 012001, 2023. doi:10.1088/1755-1315/1144/1/012001.
[25] P. B. Vijaya, K. P. Arun, N. Anand, P. D. Arumairaj, T. Dhilip, and M. Sanath Kumar, “Experimental investigation on fresh and hardened properties of high‑calcium fly ash based geopolymer concrete,” Mater. Sci. Forum, vol. 1048, pp. 412–419, 2022. (Presented at ICMSMT 2021).
[26] G. M. Canfield, J. Eichler, K. Griffith, and J. D. Hearn, “The role of calcium in blended fly ash geopolymers,” J. Mater. Sci., vol. 49, pp. 5922–5933, 2014. Doi: 10.1007/s10853-014-8230-x.
[28] P. Duan, C. Yan, and W. Zhou, “Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle,” Cem. Concr. Compos. vol. 78, pp. 108–119, 2017. doi:10.1016/j.cemconcomp.2017.01.009. https://doi.org/10.1016/j.cemconcomp.2017.01.009.
[29] B. Tempest, O. Sanusi, J. Gergely, V. Ogunro, and D. Weggel, “Compressive strength and embodied energy optimization of fly ash–based geopolymer concrete,” presented at the World of Coal Ash Conference, Lexington, KY, and May 2009.
[30] X. GAO, Q. L. Yu, A. Lazaro, and H. J. H. Brouwers, “Evaluating an eco‑olivine nanosilica as an alternative silica source in alkali‑activated composites,” J. Mater. Civ. Eng., vol. 30, no. 3, pp. 1–8, 2018. Doi: 10.1061/ (ASCE) MT.1943‑5533.0002169. https://doi.org/10.1061/ (ASCE) MT.1943-5533.0002169.
[31] S. Yeluri and N. Yadav, “Mechanical properties of rubber aggregates based geopolymer concrete – A review,” in Proc. IOP Conf. Ser.: Mater. Sci. Eng., vol. 989, International Virtual Conference on Emerging Research Trends in Structural Engineering, 2020.
[32] S. Abbas, A. Ahmed, A. Waheed, W. Abbass, M. Yousaf, S. Shaukat, H. Alabduljabbar, and Y. A. Awad, “Recycled untreated rubber waste for controlling the alkali–silica reaction in concrete,” Materials, vol. 15, no. 10, Art. no. 3584, 2022. Doi: 10.3390/ma15103584. https://doi.org/10.3390/ma15103584.
[33] F. Jokar, M. Khorram, G. Karimi, and N. Hataf, “Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite,” Constr. Build. Mater. vol. 208, pp. 2019.
[34] ASTM Committee C09, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618‑19, ASTM Int., West Conshohocken, PA, 2019.
[35] M. Mortar, N. Najm, and [Salem], “The influence of molarity activity on the green and mechanical properties of geopolymer concrete,” Constr. Mater., vol. 5, no. 1, Art. no. 16, 2025. Doi: 10.3390/constrmater5010016. https://doi.org/10.3390/constrmater5010016.
[36] ASTM Committee C09, Standard Specification for Concrete Aggregates, ASTM C33‑07, ASTM Int., West Conshohocken, PA, 2007.
[37] S. V. Patankar, S. S. Jamkar, and Y. M. Ghugal, “Effect of water‑to‑geopolymer binder ratio on the production of fly ash‑based geopolymer concrete,” Int. J. Adv. Technol. Civ. Eng., vol. 2, no. 1, 2013.
[38] BS EN 12390‑3:2002 – “Testing hardened concrete — Compressive strength of test specimens
[39] ASTM Committee C09, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM C496‑90, ASTM Int., West Conshohocken, PA, 1990.
[40] ASTM Committee C09, Standard Test Method for Flexural Strength of Concrete Using Simple Beam with Third‑Point Loading, ASTM C78‑02, ASTM Int., West Conshohocken, PA, 2002.
[41] ASTM Committee C09, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression, ASTM C469‑02, ASTM Int., West Conshohocken, PA, 2002.
[42] P. Azarsa and R. Gupta, “Comparative study involving effect of curing regime on elastic modulus of geopolymer concrete,” Buildings, vol. 10, no. 6, Art. no. 101, 2020. Doi: 10.3390/buildings10060101. https://doi.org/10.3390/buildings10060101.
[43] R. Manickavasagam and G. Mohan Kumar, “Short term properties of high‑calcium fly ash based geopolymer binder,” IOSR J. Mech. Civ. Eng., vol. 14, no. 1, pp. 13–20, Jan.–Feb. 2017.
[44] S. Thokchom, D. Dutta, and S. Ghosh, “Effect of incorporating silica fume in fly ash geopolymers,” Int. J. Civ. Environ. Eng., vol. 5, no. 12, pp. 750–754, 2011.
[45] F. N. Okoye, J. Durgaprasad, and N. B. Singh, “Effect of silica fume on the mechanical properties of fly ash based geopolymer concrete,” Ceram. Int., vol. 42, no. 2, pp. 3000–3006, Feb. 2016. doi:10.1016/j.ceramint.2015.10.084. https://doi.org/10.1016/j.ceramint.2015.10.084
[46] A. K. Mohapatra, D. K. Bera, and A. K. Rath, “Effect of silica fume on strength enhancement of geopolymer mortar in ambient curing,” paper presented at the First Online Conference, 3 July 2020, pp. 819–830.
[47] H. Castillo, H. Collado, T. Droguett, S. Sánchez, M. Vesely, P. Garrido, and S. Palma, “Factors affecting the compressive strength of geopolymers: a review,” Minerals, vol. 11, no. 12, Art. no. 1317, Dec. 2021. Doi: 10.3390/min11121317. https://doi.org/10.3390/min11121317.
[48] Z. Zuhua, X. Y., H. Z., and C. Yue, “Role of water in the synthesis of calcined kaolin based geopolymer,” J. Clay Sci., 2008.
[49] D. Hadjito, S. E. Wallah, and B. V. Rangan, “Study on engineering properties of fly ash based geopolymer concrete,” J. Austr. Ceram. Soc., vol. 38, pp. 44–47, 2002.
[50] S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, J. L. Provis, and S. Delvasto, “Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash,” Waste Biomass Valorization, vol. 3, pp. 99–108, 2012. Doi: 10.1007/s12649-011-9093-3. https://doi.org/10.1007/s12649-011-9093-3.
[51] J. E. Oh, P. J. M. Monteiro, S. S. Jun, S. Choi, and S. M. Clark, “The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers,” Cem. Concr. Res., vol. 40, pp. 189–196, 2010. doi:10.1016/j.cemconres.2009.10.003. https://doi.org/10.1016/j.cemconres.2009.10.003.
[52] T. Phoo‑ngernkham, A. Maegawa, N. Mishima, S. Hatanaka, and P. Chindaprasirt, “Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer,” Constr. Build. Mater. vol. 91, pp. 1–8, 2015. doi:10.1016/j.conbuildmat.2015.05.076. https://doi.org/10.1016/j.conbuildmat.2015.05.076.
[53] T. W. Cheng and J. P. Chiu, “Fire‑resistant geopolymer produced by granulated blast furnace slag,” Miner. Eng., vol. 16, no. 3, pp. 205–210, 2003. Doi: 10.1016/S0892-6875(03)00008-6. https://doi.org/10.1016/S0892-6875 (03)00008-6 scispace.com.
[54] H. Xu and J. S. J. van Deventer, “The geopolymerisation of alumino‑silicate minerals,” Int. J. Mineral Process., vol. 59, no. 3, pp. 247–266, 2000. Doi: 10.1016/S0301-7516(99)00074-5. https://doi.org/10.1016/S0301-7516(99)00074-5.
[55] B. Joseph and G. Mathew, “Influence of aggregate content on the behavior of fly ash based geopolymer concrete,” Scientia Iranica, vol. 19, no. 5, pp. 1188–1194, 2012. doi:10.1016/j.scient.2012.07.006. https://doi.org/10.1016/j.scient.2012.07.006.
[56] E. S. S. Wardhono, R. Risdianto, and S. Sabariman, “The effect of sodium silicate to NaOH ratio on strength development of fly ash geopolymer mortar in marine environment,” E3S Web Conf., vol. 445, Art. No. 01005, 2023. doi:10.1051/e3sconf/202344501005.
[57] B. Kumar, A. Kumar, and D. Singh, “Influence of sodium silicate to sodium hydroxide ratio on mechanical and microstructural properties of fly ash geopolymers,” Materials Today: Proc., vol. 45, pp. 321–327, 2021. doi:10.1016/j.matpr.2021.02.338. https://doi.org/10.1016/j.matpr.2021.02.338.
[58] M. Olivia and H. Nikraz, “Properties of fly ash geopolymer concrete designed by Taguchi method,” Materials and Design, vol. 36, pp. 191–198, 2012. doi:10.1016/j.matdes.2012.10.036. https://doi.org/10.1016/j.matdes.2012.10.036.
[59] D. Bondar, C. J. Lynsdale, N. B. Milestone, N. Hassani, and A. A. Ramezanianpour, “Engineering properties of alkali-activated natural pozzolan concrete,” ACI Materials Journal, vol. 108, no. M08, pp. 64–72.
[60] C. Puttbach and S. M. Soroushian, “A detailed review of equations for estimating elastic modulus in specialty concretes,” J. Mater. Civ. Eng., vol. 35, no. 6, 2023. doi:10.1061/JMCEE7.MTENG-14699. https://doi.org/10.1061/JMCEE7.MTENG-14699.
[61] ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19), American Concrete Institute, Farmington Hills, MI, 2019, 520 pp.
[62] Standards Australia, AS 3600: Concrete Structures, Sydney, NSW: Standards Australia International Ltd, 2018.
[63] P. Nath and P. K. Sarker, “Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete,” Constr. Build. Mater. vol. 130, pp. 22–31, Jan. 2017. doi:10.1016/j.conbuildmat.2016.11.034. https://doi.org/10.1016/j.conbuildmat.2016.11.034
[64] S. Iravani, “Mechanical properties of high-performance concrete,” ACI Materials Journal, vol. 93, no. 5, pp. 416–426, Sept.–Oct. 1996.
[65] K.-W. Lee, K.-L. Lin, T.-W. Cheng, Y.-M. Chiu, and J.-L. Lee, “Evaluation of the mechanical and microstructural properties of eco-friendly alkali-activated slag concrete,” Constr. Build. Mater. vol. 143, pp. 455–463, 2017. doi:10.1016/j.conbuildmat.2017.03.154. https://doi.org/10.1016/j.conbuildmat.2017.03.154.