Nanotechnology and Its Effects on Construction and Building Performance تقنية النانو وتأثيراتها على إنشاء وأداء المباني

Document Type : Research Paper

Authors

1 Civil and Architectural Engineering Department, College of Engineering and Computer Science, Jazan University, Saudi Arabia

2 of Architectural Engineering Department, Faculty of Engineering, Mataria, Helwan University, Egypt.

Abstract

Abstract: The study addressed the effects of nanotechnology on building construction and performance, aiming to analyze the impacts of nanotechnology on building construction processes and their functional and environmental performance. It employed a theoretical analytical methodology encompassing three main axes: structural materials (concrete, steel, wood), finishing materials (glass, paints), and non-structural materials (insulation, solar cells). The research relied on a comparative descriptive analysis of material properties before and after nano-treatment, supported by a study of six global application models (e.g., the Regency Church of Life - Japan and the Italian Pavilion at Expo Milan 2015). The results revealed substantial improvements in durability: a 30% increase in concrete strength using nanosilica, and a 40% reduction in maintenance costs for self-cleaning façades. Sustainability efficiency: saving 46,000 kWh annually at the California Training Center through phase-change materials (PCMs), Nanotechnology risks: health hazards (inhalation of 45% of nanoparticles among workers), and environmental challenges (accumulation of 30% non-biodegradable materials). The discussion highlighted a research gap in Arab environments, represented by the scarcity of quantitative studies on material durability under harsh climatic conditions. The study concluded with practical recommendations including: enhancing scientific research tailored to Arab conditions, establishing regulatory standards for occupational safety, and integrating nanotechnology into smart building systems, affirming that this technology represents a fundamental shift in the trajectory of sustainable architecture despite existing challenges.
الملخص: تناولت الدراسة تأثيرات تقنية النانو على إنشاء وأداء المباني حيث هدفت إلى تحليل تأثيرات تقنية النانو على عمليات إنشاء المباني وأدائها الوظيفي والبيئي، باستخدام منهجية تحليلية نظرية شملت ثلاثة محاور رئيسة: المواد الإنشائية (الخرسانة، الحديد، الأخشاب)، مواد التشطيب (الزجاج، الدهانات)، المواد غير الإنشائية (العوازل، الخلايا الشمسية). واعتمد البحث على تحليل وصفي مقارن لخصائص المواد قبل وبعد المعالجة النانوية، مدعومًا بدراسة ستة نماذج تطبيقية عالمية (مثل كنيسة حياة ريجنسي-اليابان والجناح الإيطالي في إكسبو ميلان 2015). كشفت النتائج عن تحسينات جوهرية في خصائص المواد، المتانة: زيادة مقاومة الخرسانة بنسبة 30% باستخدام النانوسليكا، وانخفاض تكاليف صيانة الواجهات الذاتية التنظيف بنسبة 40%. ، كفاءة الاستدامة: توفير 46,000 كيلوواط ساعة سنويًا في مركز تدريب كاليفورنيا عبر مواد متغيرة الطور (PCMs)، مخاطر تقنيات النانو: مخاطر صحية (استنشاق 45% من الجسيمات النانوية لدى العمال)، وتحديات بيئية (تراكم 30% من المواد غير القابلة للتحلل) . كما أبرزت المناقشة الفجوة بحثية في البيئات العربية، تتمثل في ندرة الدراسات الكمية لمتانة المواد تحت الظروف المناخية القاسية وقد وخلصت الدراسة إلى توصيات عملية تشمل: تعزيز البحث العلمي الموجه للظروف العربية، وإرساء معايير رقابية للسلامة المهنية، ودمج تقنيات النانو في أنظمة المباني الذكية، مؤكدةً أن هذه التقنية تمثل تحولاً جوهريًا في مسار العمارة المستدامة رغم التحديات القائمة.

Keywords

Main Subjects


  1. Abdel-Rahman, M. A., & Hussein, A. (2024). Regulatory Frameworks for Nanomaterials in the Arab World: Current Status and Future Perspectives. Safety Science, 172, 106411. DOI: 1016/j.ssci.2023.106411
  2. Kulkarni, S. K. (2020). Nanotechnology: Principles and Practices(3rd ed.). Springer Nature.
    ISBN: 978-3-030-34599-0 (eBook) / 978-3-030-34598-3 (Hardcover)
    DOI: 1007/978-3-030-34599-0
  3. Casini, M. (2022).Smart Buildings: Advanced Materials and Nanotechnology for Energy Efficiency. Woodhead Publishing. ISBN: 978-0-12-820791-8
  4. Ratner, M. A., & Ratner, D. (2003). Nanotechnology: A Gentle Introduction to the Next Big Idea. Pearson.
  5. Aliofkhazraei, M. (Ed.). (2014). Handbook of Nanomaterials Properties. Springer. DOI: 1007/978-3-642-31107-9
  6. Khalafalla, M. S., Hodhod, O. A., & Adam, I. A. (2015). Improving the mechanical and durability properties of cement mortar by nano titanium. Journal of Engineering Sciences, Faculty of Engineering – Assiut University, 43(5), 663–681. https://doi.org/10.21608/jesaun.2015.115213.
  7. Schodek, D., Ferreira, P., & Ashby, M. (2009). Nanomaterials, nanotechnologies and design. Butterworth-Heinemann. ISBN: 978-0750681490
  8. Mahmoud, M. E. (2023). Use of nanotechnology materials and techniques to upgrade the external finishing of buildings to achieve the quality of their internal environment: Applied study on an administrative building. Journal of Engineering Sciences, Faculty of Engineering – Assiut University, 51(4), 287–310. https://doi.org/10.21608/jesaun.2023.203121.1216.
  9. Khezri, R., Samali, B., Saberian, M., & Li, J. (2019). Nano-Enhanced Phase Change Materials for Energy-Efficient Building Envelopes. Renewable Energy, 138, 35–50. DOI: 10.1016/j.renene.2019.01.076
  10. Bao, X., Medina, M. A., & Wen, C. (2019). Development of high performance PCM cement composites for passive solar buildings. Energy and Buildings, 194, 177–186. DOI: 10.1016/j.enbuild.2019.04.028
  11. Putra, N., Prawiro, E., Amin, M., & Hakim, I. I. (2019). Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase change material for thermal energy storage. Journal of Energy Storage,  24, 100783. DOI: 1016/j.est.2019.100783
  12. Sheba, A. S. D., Abdel Fattah, Z. A., & Mohamed, H. A. M. (2024). The use of nanotechnology applications in buildings and their contribution to supporting green technology. Journal of Architecture, Arts & Humanities, 9(43), 21–37. https://doi.org/10.21608/mjaf.2022.107389.2560 | https://mjaf.journals.ekb.eg/article_220046.html
  13. Gupta, R., & Kumar, P. (2021). Carbon Nanotubes in Construction. Construction and Building Materials, *309*, 125112. DOI:10.1016/j.conbuildmat.2021.125112
  14. Roco, M. C., et al.(2022). "Nanotechnology: Evolution and Future Prospects." Nano Today, 42, 101378. DOI: 1016/j.nantod.2021.101378
  15. Vigneshkumar, C. (2014). Study on Nanomaterials and Application of Nanotechnology in Construction. Journal of Advanced Materials Research, *23*(75), 112–125.
  16. Wang, S., et al. (2022). "Nanocellulose-Reinforced Transparent Wood: Fabrication and Optical Properties". Carbohydrate Polymers, 287, 119356. DOI: 1016/j.carbpol.2022.119356
  17. Safiuddin, M. D., Hossain, K., & Collins, C. M. (2018). Potential Applications of Self-Cleansing Nano Lotus Leaf Biomimicked Coating in Sustainable Architecture. Journal of Green Building, *13*(3), 45–62.
  18. Bakker, E. (2008). Nanotechnology and human health in the construction industry. IVAM UvA BV. https://www.ivam.uva.nl/wp-ontent/uploads/2019/05/Nanotechnology_and_human_health_in_the_construction_industry.pdf
  19. Fouad, F. (2012). Nanoarchitecture & Sustainability [Master's thesis, Alexandria University]. Egypt.
  20. Ricci, C., Gambino, F., Nervo, M., Piccirillo, A., Scarcella, A., De Stefanis, A., & Pozo-Antonio, J. S. (2020). Anti-graffiti coatings on stones for historical buildings in Turin (NW Italy). Coatings, *10*(6), 582. https://doi.org/10.3390/coatings10060582
  21. [1] - Al-Sallami, H., & Al-Mamoori, S. (2022). "Nanotechnology in Sustainable Architecture: A Review of Materials and Applications". Journal of Cleaner Production, 378, 134567. DOI: 1016/j.jclepro.2022.134567[1]
  22. [1] - Jiang, D. et al. (2017). Carbon Nanostructures for Electromagnetic Shielding. Materials Today, 20(5), 245-254. DOI:10.1016/j.mattod.2017.02.015
  23. [1] - Pradeep, T.(2008). Nano: The Essentials—Understanding Nanoscience and Nanotechnology. McGraw-Hill.
  24. [1] - Waves Clinic. (2025). EMF Shielding Products Introductionhttps://nanosina.com/en/emf-shielding-nano-paint/
  25. [1] - El-Mahdy, A., & Hassan, A. (2023). "Self-Cleaning Nano-Coatings for Architectural Glass: Performance and Durability". Materials Today: Proceedings, 72(Part 3), 210-217. DOI: 1016/j.matpr.2022.12.123
  26. [1] - Zhang, Y., Lee, S., & Sun, H. (2023). Energy-Efficient Organic Light-Emitting Diodes (OLEDs) for Smart Building Applications. Advanced Materials Technologies, 8(7), 2201235. DOI: 10.1002/admt.202201235
  27. [1] -Zhang, Y., et al. (2020). "Nano-Enhanced Insulation Materials for Energy-Efficient Buildings".Energy and Buildings, 223, 110221. DOI: 1016/j.enbuild.2020.110221
  28. [1] - Fernández, A., & Martínez, P. (2021). Nano-Additives for Fire-Resistant Construction Materials. Fire Safety Journal, *125*, 103489. DOI:10.1016/j.firesaf.2021.103489
  29. [1] - Zhang, Y., Wang, X., Wu, D., & Li, Z. (2019). Preparation of hydrophobic lauric acid/SiO₂ shape-stabilized phase change materials for thermal energy storage. Journal of Energy Storage, 25, 00881.DOI: 1016/j.est.2019.100881
  30. [1] - Delgado, J. M. P. Q., Martinho, J. C., Sá, A. V., Guimarães, A. S., & Abrantes, V. (2019). Thermal energy storage with phase change materials: A literature review of applications for buildings materials(1st ed.). Springer.  DOI: 10.1007/978-3-319-97499-6  
  31. [1] - Kuhlbusch, T.A.J., et al. (2021). "Health Risks of Engineered Nanomaterials in Building Materials". Particle and Fibre Toxicology, 18(1), 34. DOI: 1186/s12989-021-00427-w
  32. [1] - https://nanosina.com/en/emf-shielding-nano-paint/?utm_source=chatgpt.com
  33. [1] - Bello, D., et al. (2023). "Occupational Exposure to Nano-TiO₂ in Construction: Inhalation Risks and Mitigation Strategies". NanoImpact, 30, 100468. DOI: 1016/j.impact.2023.100468
  34. [1] -Sánchez-Soberón, F., et al. (2022). "Environmental Release of Nanomaterials from Construction Products: A Critical Review". Science of the Total Environment, 807, 150785. DOI: 1016/j.scitotenv.2021.150785
  35. [1] - Yamashita, T., et al. (2022). "Unbuilt Megastructures: Technological and Economic Barriers in Realizing Shimizu’s Pyramid". Frontiers in Built Environment, 8, 789451. DOI: 3389/fbuil.2022.789451
  36. [1] - Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). "Titanium Dioxide Photocatalysis". Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1(1), pp -1-21
    DOI: 1016/S1389-5567(00)00002-2   https://www.sciencedirect.com/science/article/abs/pii/S1389556700000022
  37. [1] - Zhang, L., Dillert, R., Bahnemann, D., & Vormoor, M. (2012). "Photo-induced Hydrophilicity and Self-cleaning: Models and Reality". Energy & Environmental Science. 5(6), pp 7491- 7507
    DOI: 1039/C2EE21890F  |  https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee21890f
  38. [1] - https://www.taiyokogyo.co.jp/en/works/52865/
  39. [1] - Hyatt Corporation. (2003). Technical Evaluation Report: Photocatalytic TiO₂ Coating System at Garden Chapel. https://web.archive.org/web/20210120000000*/https://assets.hyatt.com/content/dam/hyatt/corporate/sustainability/resources/2003_Hakone_Chapel_TiO2_Report.pdf
  40. [1]- Berge, A., & Baetens, R. (2016). *Aerogel-Integrated Glazing Systems in Norwegian Educational Buildings: A Case Study of Levanger Primary School*. Energy and Buildings, 130, 1–12. DOI: 10.1016/j.enbuild.2016.07.047
  41. Kumar, S., Tathagat, T., Amruth, C., & Ramamurthy, P. C. (2023).Diffuse Transmission Dominant Smart and Advanced Windows for Less Energy-Hungry Building: A Review. Applied Energy, *331*, Part 1, 120408. https://www.researchgate.net/publication/365757477_Diffuse_transmission_dominant_smart_and_advanced_windows_for_less_energy-hungry_building_A_review
  42. Delgado, J. M. P. Q., et al. (2020). "Thermal Energy Storage with Phase Change Materials in Building Envelopes: A Case Study of the New Construction Training Center." Energy and Buildings, 223, 110221.
    DOI: 1016/j.enbuild.2020.110221
  43. San Diego Gas & Electric. Emerging Technologies Program. (2017). Phase Change Material in a New Construction Training Center(Project Report No. ET15SDG10151). San Diego, CA: SDG&E Publications. DOI: 13140/RG.2.2.21567.18089 ,  https://www.sdge.com/sites/default/files/et_report/ET15SDG10151_PCM_Construction_Training_Center.pdf , https://etcc-ca.com/reports/phase-change-material-new-construction-training-center?utm_source=chatgpt.com
  44. Chan, K.(2017). "GDS Architects to Design World's First Invisible Tower." Architizer. Retrieved September 5, 2017, https://architizer.com/
  45. Giovannini, A., Mazzanti, M., & Molinari, C. (2016). Photocatalytic performance of TiO₂-containing concrete used in the Italian Pavilion at Expo 2015. Construction and Building Materials, 122, 158–165. DOI: 1016/j.conbuildmat.2016.05.067
  46. Zid, K. (2025). Study of the impact of Glass Fiber Reinforced Concrete (GFRC) on contemporary facade design evolution. Journal of Umm Al-Qura University for Engineering and Architecture, 2025(1).
  47. https://doi.org/10.1007/s43995-025-00154-9
  48. Casini, M. (2016). Smart buildings: Advanced materials and nanotechnology to improve energy efficiency and environmental performance. Buildings, 6(3), 34. DOI: 3390/buildings6030034
  49.  (n.d.). Expo (2015): Palazzo Italia (Italian National Pavilion). Retrieved September 5, 2017, https://www.systematica.net/project/expo-2015-palazzo-italia-italian-national-pavilion/
  50. Beni, D., & Dimitric, D. (2004). "The Shimizu TRY 2004 Mega-City Pyramid: A Nanotechnology-Based Urban Infrastructure for Tokyo Bay". Journal of Urban Technology, 11(3), 25–44. DOI: 1080/1063073042000341968
  51. Sato, K. (2023). "Ecological Impact Assessment of Hypothetical Floating Cities: Case Study of Shimizu Pyramid". Sustainable Cities and Society, 92, 104487.DOI: 1016/j.scs.2023.104487
  52. Chen, X., & Li, Q. (2020). "Energy Harvesting Systems in Floating Megastructures: Lessons from the Shimizu Pyramid". Renewable and Sustainable Energy Reviews, 133, 110296. DOI: 1016/j.rser.2020.110296