Vertical Accuracy Assessment of Digital Elevation Models Generated by Sentinel 1A: A Case study: Eldabha, EGYPT

Document Type : Case Study

Authors

1 Civil engineering department , faculty of engineering, Assuit university, Assuit, Egypt

2 Director of the spatial state administration, New Valley Governor, Egypt.

3 Civil Engineering department, faculty of engineering, Assuit university, Egypt

4 Prof. of surveying and photogrammetry, Civil Eng. Dpt. Faculty of Engineering, Assiut University.

Abstract

This research focuses on improving the vertical accuracy of Digital Elevation Models (DEMs) generated from Sentinel-1A satellite imagery. The study investigates the influence of Goldstein filtering, temporal baseline, and perpendicular baseline on DEM accuracy. Two DEMs were created for the Eldabha region using distinct baseline configurations: (a) a 24-day temporal baseline with a 160 m perpendicular baseline, and (b) a 12-day temporal baseline with a 230 m perpendicular baseline. Each DEM was generated both with and without the application of the Goldstein filter. Accuracy assessments were conducted using GNSS data, with evaluation metrics including Root Mean Square Error (RMSE), standard deviation (STD), mean error, and the range of elevation differences. The results indicate that model (b), which utilized the shorter temporal and larger perpendicular baselines along with Goldstein filtering, achieved the highest accuracy, yielding an RMSE of 12.00 meters. The findings underscore the importance of selecting suitable interferometric baselines and applying effective filtering techniques to enhance DEM quality.

Keywords

Main Subjects


[1]      A. Braun, “Retrieval of digital elevation models from Sentinel-1 radar data - Open applications, techniques, and limitations,” Open Geosci., vol. 13, no. 1, pp. 532–569, 2021, doi: 10.1515/geo-2020-0246.
[2]      RAMON F. HANSSEN, RADAR INTERFEROMETRY Data Interpretation and Error Analysis. New York, Boston, Dordrecht, London, Moscow: KLUWER ACADEMIC PUBLISHERS, 2002. doi: doi:10.1007/0-306-47633-9.
[3]      P. A. Rosen, “Synthetic aperture radar interferometry,” Proc. IEEE, vol. 88, no. 3, pp. 333–380, 2000, doi: 10.1109/5.838084.
[4]      R. M. Goldstein and C. L. Werner, “Radar interferogram filtering for geophysical applications,” Geophys. Res. Lett., vol. 25, no. 21, pp. 4035–4038, 1998, doi: 10.1029/1998GL900033.
[5]      A. Mohammadi et al., “A multi-sensor comparative analysis on the suitability of generated dem from sentinel-1 sar interferometry using statistical and hydrological models,” Sensors (Switzerland), vol. 20, no. 24, pp. 1–24, 2020, doi: 10.3390/s20247214.
[6]      K. Nikolakopoulos, A. Kyriou, and V. Charalampopoulou, “DSM generation from Sentinel and COSMO-SkyMed data using interferometry and radargrammetry: a case study from Mykonos, Greece,” Third Int. Conf. Remote Sens. Geoinf. Environ., vol. 9535, p. 95350H, 2015, doi: 10.1117/12.2193977.
[7]       A. Mohammadi, S. Karimzadeh, and S. J. Jalal, “A Multi-Sensor Comparative Analysis on the Suitability of Generated DEM from Sentinel-1 SAR Interferometry Using Statistical and,” pp. 1–24, 2020.
[8]      H. Karabörk, H. B. Makineci, O. Orhan, and P. Karakus, “Accuracy Assessment of DEMs Derived from Multiple SAR Data Using the InSAR Technique,” Arab. J. Sci. Eng., vol. 46, no. 6, pp. 5755–5765, 2021, doi: 10.1007/s13369-020-05128-8.
[9]      J. Tomaštík, J. Chudá, D. Tunák, F. Chudý, and M. Kardoš, “Advances in smartphone positioning in forests: Dual-frequency receivers and raw GNSS data,” Forestry, vol. 94, no. 2, pp. 292–310, 2021, doi: 10.1093/forestry/cpaa032.
[10]    D. Geudtner, R. Torres, P. Snoeij, M. Davidson, and B. Rommen, “‘Sentinel-1 System capabilities and applications,’ 2014 IEEE Geoscience and Remote Sensing Symposium,” 2014 IEEE Geosci. Remote Sens. Symp., pp. 1457–1460, 2014.
[11]    Z. Li and J. Bethel, “Image coregistration in SAR interferometry,” Proc. Int. Arch. Photogramm., Remote Sens. Spat. Inf. …, vol. XXXVII, no. B1, pp. 433–438, 2008, [Online]. Available: http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/72.pdf
[12]    F. Kervyn, “Modelling topography with SAR interferometry: Illustrations of a favourable and less favourable environment,” Comput. Geosci., vol. 27, no. 9, pp. 1039–1050, 2001, doi: 10.1016/S0098-3004(00)00158-8.
[13]    A. Braun, “Sentinel-1 Toolbox TOPS Interferometry Tutorial,” no. June, pp. 1–25, 2021.
[14]    L. Braun, A., Veci, “Sentinel-1 Toolbox TOPS Interferometry Tutorial,” ESA, SkyWatch Sp. Appl. Inc, no. June, pp. 1–25, 2021, [Online]. Available: https://skywatch.co
[15]    A. Ferreti, A. Monti-Guarnieri, C. Prati, and F. Rocca, Guidelines for SAR Interferometry Processing and Interpretation, vol. 81, no. 17 I. 2007.
[16]    N. Yague-Martinez et al., “Interferometric Processing of Sentinel-1 TOPS Data,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2220–2234, 2016, doi: 10.1109/TGRS.2015.2497902.
[17]    R. L. Franceschetti, GiorgioGiorgio Franceschetti, Riccardo Lanari, Giorgio Franceschetti, Synthetic Aperture Radar Processing /. 2018. [Online]. Available: https://doi.org/10.1201/9780203737484
[18]    C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms: erratum,” J. Opt. Soc. Am. A, vol. 18, no. 5, p. 1192, 2001, doi: 10.1364/josaa.18.001192.
[19]    K. Eldhuset, “Combination of stereo sar and insar for dem generation using tandem-x spotlight data,” Int. J. Remote Sens., vol. 38, no. 15, pp. 4362–4378, 2017, doi: 10.1080/01431161.2017.1320452.
[20]    M. F. A. Rahman et al., “Accuracy assessment of open-source global digital elevation models (GDEMs) with global navigation satellite system (GNSS) levelling,” IOP Conf. Ser. Earth Environ. Sci., vol. 1064, no. 1, 2022, doi: 10.1088/1755-1315/1064/1/012018.
[21]    R. González-moradas and W. Viveen, “Remote Sensing of Environment Evaluation of ASTER GDEM2 , SRTMv3 . 0 , ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics,” Remote Sens. Environ., vol. 237, no. April 2019, p. 111509, 2020, doi: 10.1016/j.rse.2019.111509.
[22]    P. J. Rousseeuw and M. Hubert, “Robust statistics for outlier detection,” vol. 1, no. February, pp. 73–79, 2011, doi: 10.1002/widm.2.
[23]    C. Res, C. J. Willmott, and K. Matsuura, “Advantages of the mean absolute error ( MAE ) over the root mean square error ( RMSE ) in assessing average model performance,” vol. 30, pp. 79–82, 2005.
[24]    H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar echoes,” IEEE Trans. Geosci. Remote Sens., vol. 30, no. 5, pp. 950–959, 1992, doi: 10.1109/36.175330.
[25]    H. a Zebker and P. a Rosen, “Atmospheric Artifacts in Interferometric SAR Surface Deformation and Topographic Maps,” J. Geophys. Res., vol. 99, no. 19, pp. 617–634, 1996.