• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 52 (2024)
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Elmashad, A., Hassan, A., El-Sheikh, M., Mohammed, M., Okail, M., Irfan, O., Abu-Oqail, A. (2025). Effect of SiC Content and Hot Compaction on the Microstructure, Thermal, Mechanical, and Tribological Characteristics of Aluminum Matrix Nanocomposites Produced via Powder Metallurgy. JES. Journal of Engineering Sciences, 53(6), 211-236. doi: 10.21608/jesaun.2025.382488.1503
ahmed M Elmashad; A. El-Sayed M. Hassan; Mohamed N. El-Sheikh; Moustafa M. Mohammed; Mohamed Okail; Osama Irfan; A. M.I. Abu-Oqail. "Effect of SiC Content and Hot Compaction on the Microstructure, Thermal, Mechanical, and Tribological Characteristics of Aluminum Matrix Nanocomposites Produced via Powder Metallurgy". JES. Journal of Engineering Sciences, 53, 6, 2025, 211-236. doi: 10.21608/jesaun.2025.382488.1503
Elmashad, A., Hassan, A., El-Sheikh, M., Mohammed, M., Okail, M., Irfan, O., Abu-Oqail, A. (2025). 'Effect of SiC Content and Hot Compaction on the Microstructure, Thermal, Mechanical, and Tribological Characteristics of Aluminum Matrix Nanocomposites Produced via Powder Metallurgy', JES. Journal of Engineering Sciences, 53(6), pp. 211-236. doi: 10.21608/jesaun.2025.382488.1503
Elmashad, A., Hassan, A., El-Sheikh, M., Mohammed, M., Okail, M., Irfan, O., Abu-Oqail, A. Effect of SiC Content and Hot Compaction on the Microstructure, Thermal, Mechanical, and Tribological Characteristics of Aluminum Matrix Nanocomposites Produced via Powder Metallurgy. JES. Journal of Engineering Sciences, 2025; 53(6): 211-236. doi: 10.21608/jesaun.2025.382488.1503

Effect of SiC Content and Hot Compaction on the Microstructure, Thermal, Mechanical, and Tribological Characteristics of Aluminum Matrix Nanocomposites Produced via Powder Metallurgy

Article 7, Volume 53, Issue 6, November and December 2025, Page 211-236  XML PDF (2.22 MB)
Document Type: Research Paper
DOI: 10.21608/jesaun.2025.382488.1503
View on SCiNiTO View on SCiNiTO
Authors
ahmed M Elmashad email 1; A. El-Sayed M. Hassan1; Mohamed N. El-Sheikh1; Moustafa M. Mohammed1; Mohamed Okail2; Osama Irfan3; A. M.I. Abu-Oqail1
1Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt.
2Manufacturing Engineering and Production Technology Department, Modern Academy for Engineering and Technology, Cairo, P.O. Box 11571, Egypt.
3Department of Mechanical Engineering, College of Engineering, Qassim University, Saudi Arabia
Abstract
This study investigation the effect of silicon carbide (SiC) content and hot compaction temperature on the microstructural, mechanical, tribological, and physical properties of Al/SiC nanocomposites. Composites were synthesized via high-energy ball milling followed by hot compaction, with SiC varied at 2.5, 5, 7.5, and 10 wt.% and compaction temperatures set at 500 °C, 550 °C, and 600 °C. SEM analysis confirmed uniform dispersion of SiC particles within the aluminium matrix, particularly in the Al/5 wt.% SiC composite. The highest relative density was achieved by the Al/5 wt.% SiC sample compacted at 600 °C. This composition also demonstrated the most notable enhancements in performance, with improvements of 135% in wear resistance, 87% in compressive strength, and 82% in hardness compared to unreinforced aluminium. These results suggest that a 5 wt.% SiC reinforcement and 600 °C compaction temperature offer an optimal balance of properties for structural applications, highlighting the significance of processing parameters in tailoring composite behaviour.
Keywords
Al aluminium matrix composites; hot compaction; mechanical properties; tribological behaviour; SiC
Main Subjects
Mechanical, Power, Production, Design and Mechatronics Engineering.
References
[1] Hafizpour, H.R., Simchi, A. and Parvizi, S., 2010. Analysis of the compaction behavior of Al–SiC nanocomposites using linear and non-linear compaction equations. Advanced Powder Technology, 21(3), pp.273-278.

[2]  Ye, T., Xu, Y. and Ren, J., 2019. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite. Materials Science and Engineering: A, 753, pp.146-155.

[3]  Tan, Z., Chen, Z., Fan, G., Ji, G., Zhang, J., Xu, R., Shan, A., Li, Z. and Zhang, D., 2016. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Materials & Design, 90, pp.845-851.

[4] Shojaeefard, M.H., Akbari, M., Khalkhali, A., & Asadi, P. (2018). Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B₄C/aluminum composites. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 637–651.

[5] Akbari, M., Shojaeefard, M.H., Asadi, P. and Khalkhali, A., 2019. Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), pp.790-799.

[6] Wang, Z., Song, M., Sun, C. and He, Y., 2011. Effects of particle size and distribution on the mechanical properties of SiC reinforced Al–Cu alloy composites. Materials Science and Engineering: A, 528(3), pp.1131-1137.

[7] Wang, H., Zhang, R., Hu, X., Wang, C.A. and Huang, Y., 2008. Characterization of a powder metallurgy SiC/Cu–Al composite. Journal of materials processing technology, 197(1-3), pp.43-48.

[8] Fathy, A., Sadoun, A. and Abdelhameed, M., 2014. Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al–SiC composites. The International Journal of Advanced Manufacturing Technology, 73, pp.1049-1056.

[9] Narayanasamy, R., Ramesh, T. and Prabhakar, M., 2009. Effect of particle size of SiC in aluminium matrix on workability and strain hardening behaviour of P/M composite. Materials Science and Engineering: A, 504(1-2), pp.13-23.

[10] Tan, Z., Chen, Z., Fan, G., Ji, G., Zhang, J., Xu, R., Shan, A., Li, Z. and Zhang, D., 2016. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond. Materials & Design, 90, pp.845-851.

[11] Narayanasamy, R., Ramesh, T. and Prabhakar, M., 2009. Effect of particle size of SiC in aluminium matrix on workability and strain hardening behaviour of P/M composite. Materials Science and Engineering: A, 504(1-2), pp.13-23.

[12] Yu, H.O.N.G., Wang, W.J., Liu, J.Q., Tang, W.M. and Wu, Y.C., 2019. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC. Transactions of Nonferrous Metals Society of China, 29(5), pp.941-949.

[13] Penther, D., Ghasemi, A., Riedel, R., Fleck, C. and Kamrani, S., 2018. Effect of SiC nanoparticles on manufacturing process, microstructure and hardness of Mg-SiC nanocomposites produced by mechanical milling and hot extrusion. Materials Science and Engineering: A, 738, pp.264-272.

[14] Khadem, S.A., Nategh, S. and Yoozbashizadeh, H., 2011. Structural and morphological evaluation of Al–5 vol.% SiC nanocomposite powder produced by mechanical milling. Journal of Alloys and Compounds, 509(5), pp.2221-2226.

[15] Hassan, A., El-Hamid, A., Wagih, A. and Fathy, A., 2014. Effect of mechanical milling on the morphologyand structural evaluation of Al-Al2O3 nanocomposite powders. International Journal of Engineering, 27(4), pp.625-632.

[16] Yildirim, M., Özyürek, D. and Gürü, M., 2016. Investigation of microstructure and wear behaviors of al matrix composites reinforced by carbon nanotube. Fullerenes, Nanotubes and Carbon Nanostructures, 24(7), pp.467-473.

[17] Simões, S., Viana, F., Reis, M.A. and Vieira, M.F., 2014. Improved dispersion of carbon nanotubes in aluminum nanocomposites. Composite structures, 108, pp.992-1000.

[18] Javadi, A., Mirdamadi, S., Faghihisani, M., Shakhesi, S. and Soltani, R., 2013. Well-dispersion of multi-walled carbon nanotubes in aluminum matrix composites by controlling the mixing process. Fullerenes, Nanotubes and Carbon Nanostructures, 21(5), pp.436-447.

[19] Mhaske, M.S. and Shirsat, U.M., 2021. An investigation of mechanical properties of aluminium based silicon carbide (AlSiC) metal matrix composite by different manufacturing methods. Materials Today: Proceedings, 44, pp.376-382.

[20] Zulfia, A., Atkinson, H.V., Jones, H. and King, S., 1999. Effect of hot isostatic pressing on cast A357 aluminium alloy with and without SiC particle reinforcement. Journal of materials science, 34, pp.4305-4310.

[21] Yu, H., Wang, W., Liu, J., Tang, W., Wu, Y., 2019. Effect of porosity and interface structures on thermal and mechanical properties of SiCp/6061Al composites with high volume fraction of SiC. Trans. Nonferrous Met. Soc. China 29(5), 941–949.

[22] Ye, T., Xu, Y. and Ren, J., 2019. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite. Materials Science and Engineering: A, 753, pp.146-155.

[23]  El-Kady, O. and Fathy, A., 2014. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Materials & Design (1980-2015), 54, pp.348-353.

[24]  Jiang, W., Zhu, J., Li, G., Guan, F., Yu, Y. and Fan, Z., 2021. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. Journal of Materials Science & Technology, 88, pp.119-131.

[25] Iqbal, A.K.M., Lim, M.J. and Nuruzzaman, D.M., 2017, December. Effect of compaction load and sintering temperature on the mechanical properties of the Al/SiC nano-composite materials. In AIP Conference Proceedings (Vol. 1901, No. 1). AIP Publishing.

[26] Abu-Oqail, A.M.I., Elmashad, A.M., El-Sheikh, M.N., Mohamed, M.M., El-Sayed, H.A., 2024. Mechanical and tribological performance of Al–xSiC composites produced by powder metallurgy technique for throttle valves applications. J. Egypt. Soc. Tribol. 21(3), 55–73.

[27] Canakci, A., & Varol, T. (2014). Microstructure and properties of AA7075/Al–SiC composites fabricated using powder metallurgy and hot pressing. Powder Technology, 268, 72–79.

[28] Ünlü, B. S. (2008). Investigation of tribological and mechanical properties of Al₂O₃–SiC reinforced Al composites manufactured by casting or P/M method. Materials & Design, 29(10), 2002–2008.

[29] Akbari, M., Shojaeefard, M.H., Asadi, P. and Khalkhali, A., 2019. Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), pp.790-799.

[30] Singh, J., 2016. Fabrication characteristics and tribological behavior of Al/SiC/Gr hybrid aluminum matrix composites: A review. Friction, 4, pp.191-207.

[31] Karamış, M. B., Sarı, F. N., & Erturun, V. (2012). Friction and wear behaviors of reciprocatingly extruded Al–SiC composite. Journal of Materials Processing Technology, 212(12), 2578–2585.

[32] Ahmadian, H., Zhou, T., Guo, W., Yu, Q., Sadoun, A.M., Fathy, A. and Wagih, A., 2024. A novel strategy for activation technique for 6H-SiC substrates in electroless Ni-P plating processes. Results in Engineering, 24, p.103126.

[33] Alsoruji, G.S., Sadoun, A.M., Abd Elaziz, M., Al-Betar, M.A., Abdallah, A.W. and Fathy, A., 2023. On the prediction of the mechanical properties of ultrafine grain Al-TiO2 nanocomposites using a modified long-short term memory model with beluga whale optimizer. Journal of Materials Research and Technology, 23, pp.4075-4088.

[34] Najjar, I.M.R., Sadoun, A.M., Ibrahim, A., Ahmadian, H. and Fathy, A., 2023. A modified artificial neural network to predict the tribological properties of Al-SiC nanocomposites fabricated by accumulative roll bonding process. Journal of Composite Materials, 57(21), pp.3433-3445.

[35] Bor, A., Jargalsaikhan, B., Uranchimeg, K., Lee, J. and Choi, H., 2021. Particle morphology control of metal powder with various experimental conditions using ball milling. Powder technology, 394, pp.181-190.

[36] Atkins, Edward. "Elements of X-ray Diffraction." (1978): 572.

[37] Little, J.E., Yuan, X. and Jones, M.I., 2012. Characterisation of voids in fibre reinforced composite materials. Ndt & E International, 46, pp.122-127.

[38] Mousa, M.M., Mohammed, M.M., El-Kady, O.A. and Mohamed, H.S., 2024. Microstructure, hardness, electrical, and thermal conductivity of SZCN solder reinforced with TiO2 and ZrO2 nanoparticles fabricated by powder metallurgy method. Journal of Materials Science: Materials in Electronics, 35(17), p.1133.

[39] Dak, G. and Pandey, C., 2021. Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel. International Journal of Pressure Vessels and Piping, 194, p.104536.

[40] Odabas, D., 2018. Effects of load and speed on wear rate of abrasive wear for 2014 Al alloy. In IOP conference series: materials science and engineering (Vol. 295, No. 1, p. 012008). IOP Publishing.

[41] Suryanarayana, C., & Al-Aqeeli, N. (2013). Mechanically alloyed nanocomposites. Progress in Materials Science, 58(4), 383-502.

[42] Benjamin, J. S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1(10), 2943-2951.

[43] Ye, T., Xu, Y. and Ren, J., 2019. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite. Materials Science and Engineering: A, 753, pp.146-155.

[44] Fogagnolo, J. B., et al. (2003). Effect of mechanical alloying on the morphology, microstructure, and properties of Al–SiC composites. Materials Science and Engineering: A, 355(1-2), 50-54.

[45] Chen, J.P., Gu, L. and He, G.J., 2020. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Advances in Manufacturing, 8(3), pp.279-315.

[46] Li, Q., Yuan, S., Li, Z., Gao, X. and Chen, B., 2023. Mechanical response and microstructure evolution of SiC particle-reinforced Al-MMCs under ultrasonic loading. Composites Part A: Applied Science and Manufacturing, 173, p.107657.

[47] Zhang, X., Li, S., Pan, D., Pan, B. and Kondoh, K., 2018. Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Composites Part A: Applied Science and Manufacturing, 105, pp.87-96.

[48] Asgharzadeh, H. and McQueen, H.J., 2015. Grain growth and stabilisation of nanostructured aluminium at high temperatures. Materials Science and Technology, 31(9), pp.1016-1034.

[49] Gurmaita, P.K., Pongen, R. and Gurmaita, S.K., 2024. A7075 alloy reinforced metal matrix composites fabricated through stircasting route: A review. International Journal of Cast Metals Research, 37(3), pp.208-255.

[50] Wang, Y. and Monetta, T., 2023. Systematic study of preparation technology, microstructure characteristics and mechanical behaviors for SiC particle-reinforced metal matrix composites. Journal of Materials Research and Technology, 25, pp.7470-7497.

[51] Momohjimoh, I., Hussein, M.A. and Al-Aqeeli, N., 2019. Recent advances in the processing and properties of alumina–CNT/SiC nanocomposites. Nanomaterials, 9(1), p.86.

[52] Rajpoot, S., Ha, J.H. and Kim, Y.W., 2021. Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics. Ceramics International, 47(6), pp.8668-8676.

[53] Melaibari, A., Fathy, A., Mansouri, M. and Eltaher, M.A., 2019. Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites. Journal of Alloys and Compounds, 774, pp.1123-1132.

[54] Froes, F. H., Suryanarayana, C., & Frazier, W. E. (1997). "Advanced powder metallurgy of light metal matrix composites." JOM (Journal of the Minerals, Metals & Materials Society), 49(5), 15-19.

[55] Huo, S., Xie, L., Xiang, J., Pang, S., Hu, F. and Umer, U., 2018. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites. Applied Physics A, 124, pp.1-12.

[56] Tan, C., Ma, W., Deng, C., Zhang, D. and Zhou, K., 2023. Additive manufacturing SiC reinforced maraging steel: Parameter optimisation, microstructure and properties. Advanced Powder Materials, 2(1), p.100076.

Statistics
Article View: 278
PDF Download: 176
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.