Comparative Analysis of Flux-Cored Arc Welding and Shielded Metal Arc Welding Processes on Hardox 450 Steel: Microstructural, Mechanical, and Fractographic Investigation

Document Type : Research Paper

Authors

1 Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt

2 Mechanical Department, Faculty of Technology & Education, Suez University, Suez 43518, Egypt

Abstract

This study investigates the microstructural and mechanical properties of Hardox 450 steel joints welded using flux-cored arc welding (FCAW) and shielded metal arc welding (SMAW) techniques. Hardox 450 steel plates with a thickness of 4 mm were welded using AWS A5.20 E71T-1C filler rods for FCAW and AWS A5.1 E7018 filler rods for SMAW. The welded joints were characterized through macrostructural and microstructural examinations using optical microscopy and scanning electron microscopy (SEM), as well as Rockwell hardness tests and tensile property evaluations. The results showed that both FCAW and SMAW produced defect-free welds with acceptable reinforcement heights and well-defined fusion zones, heat-affected zones (HAZ), and weld zones (WZ). The hardness measurements revealed lower hardness values in the WZ compared to the HAZ and base metal for both welding processes, with FCAW joints exhibiting higher WZ hardness than SMAW joints. Tensile tests demonstrated that the FCAW joints had superior tensile strength of 903.8 MPa compared to the SMAW joints of 755.6 MPa, representing joint efficiencies of 65% and 55%, respectively, relative to the base material of 1385.5 MPa). However, the SMAW joints displayed higher fracture strain of 17.1% than the FCAW joints of 13.6%, indicating greater ductility. Fracture surface analysis using SEM revealed distinct failure mechanisms, with the FCAW joints exhibiting more pronounced cleavage facets and brittle fracture characteristics compared to the SMAW joints. The findings highlight the influence of welding processes and filler materials on the microstructure and mechanical properties of Hardox 450 steel weldments.

Keywords

Main Subjects


  1. Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Klimova-Korsmik, O. Hybrid Laser-Arc Welding Tanks Steels. IOP Conf Ser Mater Sci Eng 2016, 125, doi:10.1088/1757-899X/125/1/012002.
  2. Rajput, V.; Goud, M.; Suri, N.M. Performance Analysis of ECDM Process Using Surfactant Mixed Electrolyte; 2020; Vol. Part F255; ISBN 9789811546181.
  3. Frydman, S.; Konat; Pekalski, G. Structure and Hardness Changes in Welded Joints of Hardox Steels. Archives of Civil and Mechanical Engineering 2008, 8, 15–27, doi:10.1016/s1644-9665(12)60118-6.
  4. Gallina, B.; Volcanoglo Biehl, L.; Braz Medeiros, J.L.; de Souza, J. The Influence of Different Heat Treatment Cycles on the Properties of the Steels HARDOX® 500 and STRENX® 700. Revista Liberato 2020, 67–74, doi:10.31514/rliberato.2020v21n35.p67.
  5. Konovalov, S. V.; Kormyshev, V.E.; Nevskii, S.A.; Ivanov, Y.F.; Gromov, V.E. Formation Wear Resistant Coatings on Martensite Steel Hardox 450 by Welding Methods. IOP Conf Ser Mater Sci Eng 2016, 142, doi:10.1088/1757-899X/142/1/012079.
  6. BIAŁOBRZESKA, B.; KONAT, Ł. Comparative Analysis of Abrasive-Wear Resistance of Brinar and Hardox Steels. Tribologia 2018, 272, 7–16, doi:10.5604/01.3001.0010.6261.
  7. Ahmed, M.S.I.; Ahmed, M.M.Z.; Abd El-Aziz, H.M.; Habba, M.I.A.; Ismael, A.F.; El-Sayed Seleman, M.M.; Abd El-Aty, A.; Alamry, A.; Alzahrani, B.; Touileb, K.; et al. Cladding of Carbon Steel with Stainless Steel Using Friction Stir Welding: Effect of Process Parameters on Microstructure and Mechanical Properties. Crystals (Basel) 2023, 13, doi:10.3390/cryst13111559.
  8. Fouad, R.A.; Habba, M.I.A.; Elshaghoul, Y.G.Y.; Seleman, M.M.E.-S.; Hafez, K.M.; El-Fahhar, H.H.; Barakat, W.S. Comparative Analysis of Filler Metals on Microstructure and Mechanical Performance of TIG-Welded AISI 201 Austenitic Stainless-Steel Joints. Science and Technology of Welding and Joining 2024, 29, 356–367, doi:10.1177/13621718241283374.
  9. Harinarayanan, G.; Krishnan, V.K.; Natarajan, M.P.; Surender, V.; Gowthaman, J. Wear Behavior and Wear Worn Surface Analysis on Hardox Steel. Key Eng Mater 2022, 935, 99–104, doi:10.4028/p-09akh6.
  10. Kim, B.E.; Park, J.Y.; Lee, J.S.; Lee, J.I.; Kim, M.H. Effects of the Welding Process and Consumables on the Fracture Behavior of 9 Wt.% Nickel Steel. Exp Tech 2020, 44, 175–186, doi:10.1007/s40799-019-00321-3.
  11. Mazur, M.; Ulewicz, R.; Bokůvka, O. The Impact of Welding Wire on the Mechanical Properties of Welded Joints. Materials Engineering - Materiálové inžinierstvo 2014, 21, 122–128.
  12. Lazić, V.; Arsić, D.; Nikolić, R.R.; Djordjević, D.; Prokić-Cvetković, R.; Popović, O. Application of the High Strength Steel HARDOX 450 for Manufacturing of Assemblies in the Military Industry. Key Eng Mater 2017, 755, 96–105, doi:10.4028/www.scientific.net/KEM.755.96.
  13. Fouad, R.A.; Habba, M.I.A.; Elshaghoul, Y.G.Y.; El-Sayed Seleman, M.M.; Hafez, K.M.; Hamid, F.S.; Barakat, W.S. The Influence of Various Welding Wires on Microstructure, and Mechanical Characteristics of AA7075 Al-Alloy Welded by TIG Process. Sci Rep 2024, 14, 19023, doi:10.1038/s41598-024-69227-4.
  14. Elmas, M.; Koçar, O.; Anaç, N. Study of the Microstructure and Mechanical Property Relationships of Gas Metal Arc Welded Dissimilar Protection 600T, DP450 and S275JR Steel Joints. Crystals 2024, Vol. 14, Page 477 2024, 14, 477, doi:10.3390/CRYST14050477.
  15. Habba, M.I.A.; Alsaleh, N.A.; Badran, T.E.; El-Sayed Seleman, M.M.; Ataya, S.; El-Nikhaily, A.E.; Abdul-Latif, A.; Ahmed, M.M.Z. Comparative Study of FSW, MIG, and TIG Welding of AA5083-H111 Based on the Evaluation of Welded Joints and Economic Aspect. Materials 2023, 16, doi:10.3390/ma16145124.
  16. Gupta, A.; Sharma, V.; Kumar, P.; Thakur, A. Investigating the Effect of Ferritic Filler Materials on the Mechanical and Metallurgical Properties of Hardox 400 Steel Welded Joints. Mater Today Proc 2020, 39, 1640–1646, doi:10.1016/j.matpr.2020.05.788.
  17. Konat, Ł.; Zemlik, M.; Jasiński, R.; Grygier, D. Austenite Grain Growth Analysis in a Welded Joint of High-Strength Martensitic Abrasion-Resistant Steel Hardox 450. Materials 2021, 14, doi:10.3390/ma14112850.
  18. Konat, Ł. Technological, Microstructural and Strength Aspects of Welding and Post-Weld Heat Treatment of Martensitic, Wear-Resistant Hardox 600 Steel. Materials 2021, 14, doi:10.3390/ma14164541.
  19. Baskutis, S.; Baskutiene, J.; Dragašius, E.; Kavaliauskiene, L.; Keršiene, N.; Kusyi, Y.; Stupnytskyy, V. Influence of Additives on the Mechanical Characteristics of Hardox 450 Steel Welds. Materials 2023, 16, doi:10.3390/ma16165593.
  20. Ivanov, Y.F.; Konovalov, S. V.; Kormyshev, V.E.; Gromov, V.E.; Teresov, A.D.; Semina, O.A. Structure and Properties of Hardox 450 Steel with Arc Welded Coatings. AIP Conf Proc 2017, 1909, 1–6, doi:10.1063/1.5013754.
  21. Zuo, Z.; Haowei, M.; Yarigarravesh, M.; Assari, A.H.; Tayyebi, M.; Tayebi, M.; Hamawandi, B. Microstructure, Fractography, and Mechanical Properties of Hardox 500 Steel TIG-Welded Joints by Using Different Filler Weld Wires. Materials 2022, 15, 4–6, doi:10.3390/ma15228196.
  22. Akbar, R.; Awali, J.; Stasiyanur, F.; Lubis, M.P.D. Analysis of the Effect of Variations in Welding Current of the Combination of SMAW & FCAW Using Double V Groove on Tensile Strength, Impact and Microstructure in ASTM A36 Steel Weld Metal Area. SPECTA Journal of Technology 2023, 7, 434–442, doi:10.35718/specta.v7i1.704.
  23. Özturan, A.B.; İrsel, G.; Güzey, B.N. Study of the Microstructure and Mechanical Property Relationships of Gas Metal Arc Welded Dissimilar Hardox 450 and S355J2C+N Steel Joints. Materials Science and Engineering: A 2022, 856, doi:10.1016/j.msea.2022.143486.
  24. Wang, Z.; Wu, X.; Liu, D.; Zuo, X. Correlation Between Microstructure and Fracture Behavior in Thick HARDOX 450 Wear-Resistant Steel with TiN Inclusions. Front Mater 2021, 8, 691551, doi:10.3389/fmats.2021.691551.
  25. Sun, J.; Jiang, T.; Liu, H.; Guo, S.; Liu, Y. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying. Metallurgical and Materials Transactions A 2016, 47, 5985–5993, doi:10.1007/s11661-016-3707-0.