[1] Saghiv, M.S.; Sagiv, M.S. Cardiovascular Function. Basic Exercise Physiology 2020, 285–369, doi:10.1007/978-3-030-48806-2_6.
[2] Ho, K.-J. Cardiovascular Diseases. Nutritional Aspects of Aging 2018, 75–100, doi:10.1201/9781351075145-3.
[3] Ogunpola, A.; Saeed, F.; Basurra, S.; Albarrak, A.M.; Qasem, S.N. Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases. Diagnostics 2024, 14, doi:10.3390/diagnostics14020144.
[4] Cardiovascular Diseases Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 7 May 2024).
[5] Liu, F.; Panagiotakos, D. Real-World Data: A Brief Review of the Methods, Applications, Challenges and Opportunities. BMC Med Res Methodol 2022, 22, 287, doi:10.1186/s12874-022-01768-6.
[6] Krittanawong, C.; Virk, H.U.H.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.J.; Kaplin, S.; Narasimhan, B.; Kitai, T.; et al. Machine Learning Prediction in Cardiovascular Diseases: A Meta-Analysis. Scientific Reports 2020 10:1 2020, 10, 1–11, doi:10.1038/s41598-020-72685-1.
[7] Elbasi, E.; Zreikat, A.I. Heart Disease Classification for Early Diagnosis Based on Adaptive Hoeffding Tree Algorithm in IoMT Data. International Arab Journal of Information Technology 2023, 20, 38–48, doi:10.34028/IAJIT/20/1/5.
[8] Arooj, S.; Rehman, S. ur; Imran, A.; Almuhaimeed, A.; Alzahrani, A.K.; Alzahrani, A. A Deep Convolutional Neural Network for the Early Detection of Heart Disease. Biomedicines 2022, Vol. 10, Page 2796 2022, 10, 2796, doi:10.3390/BIOMEDICINES10112796.
[9] Rohit Chowdary, K.; Bhargav, P.; Nikhil, N.; Varun, K.; Jayanthi, D. Early Heart Disease Prediction Using Ensemble Learning Techniques. J Phys Conf Ser 2022, 2325, 012051, doi:10.1088/1742-6596/2325/1/012051.
[10] Bouqentar, M.A.; Terrada, O.; Lamrani, D.; Ouhmida, A.; Cherradi, B.; Raihani, A. Primary Prediction of Heart Disease Using Machine Learning Algorithms and SMOTE. In Proceedings of the 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET); IEEE, May 18 2023; pp. 1–7.
[11] Aggarwal, R.; Kumar, S. MLPPCA: Heart Disease Detection Using Machine Learning. In Proceedings of the 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC); IEEE, November 25 2022; pp. 457–461.
[12] J., A.; M., P. Forward and Backward Propagation Network Based Heart Disease Prediction. IJIRMPS - International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences 2022, 10, doi:10.37082/IJIRMPS.
[13] Ashri, S.E.A.; El-Gayar, M.M.; El-Daydamony, E.M. HDPF: Heart Disease Prediction Framework Based on Hybrid Classifiers and Genetic Algorithm. IEEE Access 2021, 9, 146797–146809, doi:10.1109/ACCESS.2021.3122789.
[14] Ali, M.M.; Al-Doori, V.S.; Mirzah, N.; Afsari Hemu, A.; Mahmud, I.; Azam, S.; Al-Tabatabaie F, F.; Ahmed, K.; Bui, F.M.; Moni, M.A. A Machine Learning Approach for Risk Factors Analysis and Survival Prediction of Heart Failure Patients. Healthcare Analytics 2023, 3, 100182, doi:10.1016/j.health.2023.100182.
[15] Vijaya, J. Heart Disease Prediction Using Clustered Genetic Optimization Algorithm. Proceedings of the International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics, ICIITCEE 2023 2023, 1072–1077, doi:10.1109/IITCEE57236.2023.10091050.
[16] Rashme, T.Y.; Islam, L.; Jahan, S.; Prova, A.A. Early Prediction of Cardiovascular Diseases Using Feature Selection and Machine Learning Techniques. Proceedings of the 6th International Conference on Communication and Electronics Systems, ICCES 2021 2021, 1554–1559, doi:10.1109/ICCES51350.2021.9489057.
[17] Bhardwaj, S. Employment of The Selective Machine Learning Algorithm for The Early and Effective Detection and Diagnosis of Cardiovascular Disease. International Journal of Research in Medical Sciences and Technology 2021, 11, 239–246, doi:10.37648/IJRMST.V11I01.024.
[18] El Massari, H.; Gherabi, N.; Mhammedi, S.; Sabouri, Z.; Ghandi, H. Ontology-Based Decision Tree Model for Prediction of Cardiovascular Disease. Indian Journal of Computer Science and Engineering 2022, 13, 851–859, doi:10.21817/INDJCSE/2022/V13I3/221303143.
[19] Revathi, T.K.; Balasubramaniam, S.; Sureshkumar, V.; Dhanasekaran, S. An Improved Long Short-Term Memory Algorithm for Cardiovascular Disease Prediction. Diagnostics 2024, 14, doi:10.3390/diagnostics14030239.
[20] Kurian, N.S.; Renji, K.S.; Sajithra, S.; Yuvasree, R.; Jenefer, F.A.; Swetha, G. Prediction of Risk in Cardiovascular Disease Using Machine Learning Algorithms. International Conference on Sustainable Computing and Data Communication Systems, ICSCDS 2022 - Proceedings 2022, 162–167, doi:10.1109/ICSCDS53736.2022.9760879.
[21] Moushi, O.M.; Ara, N.; Helaluddin, M.; Mondal, H.S. Enhancing the Accuracy and Explainability of Heart Disease Prediction Models through Interpretable Machine Learning Techniques. 2023 International Conference on Information and Communication Technology for Sustainable Development, ICICT4SD 2023 - Proceedings 2023, 1–6, doi:10.1109/ICICT4SD59951.2023.10303572.
[22] Khan, A.; Qureshi, M.; Daniyal, M.; Tawiah, K. A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction. Health Soc Care Community 2023, 2023, 1–10, doi:10.1155/2023/1406060.
[23] Heart Failure Prediction Dataset Available online: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction (accessed on 10 May 2024).
[24] Song, Y.Y.; Lu, Y. Decision Tree Methods: Applications for Classification and Prediction. Shanghai Arch Psychiatry 2015, 27, 130–135, doi:10.11919/j.issn.1002-0829.215044.
[25] More, A.S.; Rana, D.P. Review of Random Forest Classification Techniques to Resolve Data Imbalance. In Proceedings of the 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM); IEEE, October 2017; pp. 72–78.
[26] Cunningham, P.; Delany, S.J. K-Nearest Neighbour Classifiers - A Tutorial. ACM Comput Surv 2022, 54, 1–25, doi:10.1145/3459665.
[27] Sherif, F.F.; Ahmed, K.S. A Machine Learning Approach for Stroke Differential Diagnosis by Blood Biomarkers., doi:10.12720/jait.15.1.1-9.
[28] Awad, M.; Khanna, R. Support Vector Machines for Classification. Efficient Learning Machines 2015, 39–66, doi:10.1007/978-1-4302-5990-9_3.
[29] G, A.; Ganesh, B.; Ganesh, A.; Srinivas, C.; Dhanraj; Mensinkal, K. Logistic Regression Technique for Prediction of Cardiovascular Disease. Global Transitions Proceedings 2022, 3, 127–130, doi:10.1016/J.GLTP.2022.04.008.
[30] Asiri, A.A.; Khan, B.; Muhammad, F.; Rahman, S.U.; Alshamrani, H.A.; Alshamrani, K.A.; Irfan, M.; Alqhtani, F.F. Machine Learning-Based Models for Magnetic Resonance Imaging (MRI)-Based Brain Tumor Classification. Intelligent Automation and Soft Computing 2023, 36, 299–312, doi:10.32604/iasc.2023.032426.
[31] Tawfik, N.; El Din, M.F.; Dessouky, M.I.; Abd Ei-Samie, F.E. Processing of Corneal Images with A Cepstral Approach. 23rd International Conference on Computer Theory and Applications, ICCTA 2013 - Proceedings 2013, 49–54, doi:10.1109/ICCTA32607.2013.9529605.
[32] Khan, Z.; Mishra, D.K.; Sharma, V.; Sharma, A. Empirical Study of Various Classification Techniques for Heart Disease Prediction. In Proceedings of the 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA); IEEE, October 30 2020; pp. 57–62.
[33] Foody, G.M. Challenges in the Real World Use of Classification Accuracy Metrics: From Recall and Precision to the Matthews Correlation Coefficient. PLoS One 2023, 18, e0291908, doi:10.1371/journal.pone.0291908.
[34] Jin Huang; Ling, C.X. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans Knowl Data Eng 2005, 17, 299–310, doi:10.1109/TKDE.2005.50.
[35] Tushar, A.M.; Wazed, A.; Shawon, E.; Rahman, M.; Hossen, M.I.; Jesmeen, M.Z.H. A Review of Commonly Used Machine Learning Classifiers in Heart Disease Prediction. 2022 IEEE 10th Conference on Systems, Process and Control, ICSPC 2022 - Proceedings 2022, 319–323, doi:10.1109/ICSPC55597.2022.10001742.
[36] Gangadhar, M.S.; Sai, K.V.S.; Kumar, S.H.S.; Kumar, K.A.; Kavitha, M.; Aravinth, S.S. Machine Learning and Deep Learning Techniques on Accurate Risk Prediction of Coronary Heart Disease. Proceedings - 7th International Conference on Computing Methodologies and Communication, ICCMC 2023 2023, 227–232, doi:10.1109/ICCMC56507.2023.10083756.
[37] Ozcan, M.; Peker, S. A Classification and Regression Tree Algorithm for Heart Disease Modeling and Prediction. Healthcare Analytics 2023, 3, 100130, doi:10.1016/j.health.2022.100130.
[38] Patidar, S.; Kumar, D.; Rukwal, D. Comparative Analysis of Machine Learning Algorithms for Heart Disease Prediction. Advances in Transdisciplinary Engineering 2022, 27, 64–69, doi:10.3233/ATDE220723.
[39] Venkatesh, V.; Rai, P.; Reddy, K.A.; Praba, S.; Anushiadevi, R. An Intelligent Framework for Heart Disease Prediction Deep Learning-Based Ensemble Method. In Proceedings of the 2022 International Conference on Computer, Power and Communications (ICCPC); IEEE, December 14 2022; pp. 274–280.
[40] S, N.; K, V.; B, I.; Kalshetty, Jagadevi.N. Heart Disease Prediction Using Artificial Intelligence Ensemble Network. In Proceedings of the 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon); IEEE, October 16 2022; pp. 1–6.
[41] Sarra, R.R.; Dinar, A.M.; Mohammed, M.A.; Ghani, M.K.A.; Albahar, M.A. A Robust Framework for Data Generative and Heart Disease Prediction Based on Efficient Deep Learning Models. Diagnostics 2022, 12, 2899, doi:10.3390/diagnostics12122899.