Performance of a Robust Passivity-Fuzzy Logic Controller for a Doubly Fed Induction Generator

Document Type : Research Paper

Authors

1 IRECOM Laboratory, Faculty of Electrical Engineering, Djilali Liabès University of Sidi Bel-Abbès, BP 89 Sidi Bel Abbes 22000, Algeria

2 IRECOM Laboratory, Faculty of Electrical Engineering, Djilali Liabès University of Sidi Bel-Abbès, BP 89 Sidi Bel Abbes 22000, Algeria

Abstract

Abstract

The article discussed a robust control strategy that combined passivity with interval type-2 fuzzy logic for a wind energy conversion system (WECS) using a variable speed wind turbine (WT) and a doubly fed induction generator (DFIG). The main objective was to optimize active and reactive power flow from the generator to the grid while maintaining stable operation, with rotor signals regulated by a bidirectional converter. This approach effectively managed high uncertainty in complex, nonlinear systems by merging interconnection and damping assignment (IDA) passivity-based control (PBC) with interval type-2 fuzzy logic control (IT2-FLC). The IDA-PBC method compensated for nonlinear characteristics without eliminating them, while IT2-FLC improved how uncertainties were handled by addressing vagueness and unreliable information. A comprehensive comparison with passivity-based control (PBC) was conducted, and the proposed methods were evaluated under various conditions, including speed fluctuations and parameter variations. simulation results indicate that the proposed passivity-fuzzy logic Controller (PFLC) significantly outperforms IDA-PBC strategies in terms of rise time, reference tracking accuracy, error minimization, overshoot, and power ripple. Furthermore, the PFLC achieves a reduction in total harmonic distortion (THD) by 8.35% and 6.61% in two separate tests relative to the IDA-PBC approach. The integration of IDA-PBC and IT2-FLC enhanced the system's dynamic performance by reducing sensitivity to disturbances and improving its ability to manage parameter changes, resulting in greater stability and robustness under varying conditions.

Keywords

Main Subjects


 [1]   Xiong, L., Li, J., Li, P., Huang, S., Wang, Z., & Wang, J. "Event triggered prescribed time convergence sliding mode control of DFIG with disturbance rejection capability". International Journal of Electrical Power & Energy Systems, vol. 131, p. 106970, 2021. https://doi.org/10.1016/j.ijepes.2021.106970.
[2]   Mousavi, Y., Bevan, G., Kucukdemiral, I. B., & Fekih, A. "Sliding mode control of wind energy conversion systems: Trends and applications". Renewable and Sustainable Energy Reviews, vol. 167, pp. 112734, 2022. https://doi.org/10.1016/j.rser.2022.112734
  [3] Fridi, S. K., Koondhar, M. A., Jamali, M. I., Alaas, Z. M., Alsharif, M. H., Kim, M. K., ... & Ahmed, M. M. R. "Winds of progress :an in-depth exploration of offshore, floating, and onshore wind turbines as cornerstones for sustainable energy generation and environmental stewardship." IEEE Access ,vol.12, pp. 66147-66166, 2024. https://doi.org/10.1109/ACCESS.2024.3397243
 [4]   GWEC. Global Wind Report 2024. "Global Wind Energy Council". 2024.
[5]   Sreenivasulu, Panisetty, and Jakeer Hussain. "Protection of rotor side converter of doubly fed induction generator-based wind energy conversion system under symmetrical grid voltage fluctuations." Frontiers in Energy Research vol.12,pp. 1465167, 2024.‏ https://doi.org/10.3389/fenrg.2024.1465167
[6]  Khan, D., Ahmed Ansari, J., Aziz Khan, S., & Abrar, U." Power optimization control scheme for doubly fed induction generator used in wind turbine generators". Inventions, , vol. 5, no. 3, p. 40, 2020.https://doi.org/10.3390/inventions5030040
 [7]  Benbouhenni, H., Bizon, N., Mosaad, M. I., Colak, I., Djilali, A. B., & Gasmi, H. "Enhancement of the power quality of DFIG-based dual-rotor wind turbine systems using fractional order fuzzy controller". Expert Systems with Applications, Vol. 238, pp. 121695, 2024. https://doi.org/10.1016/j.eswa.2023.121695
[8]   HERIZI, Abdelghafour et ROUABHI, Riyadh. "Hybrid Control Using Sliding Mode Control with Interval Type-2 Fuzzy Controller of a Doubly Fed Induction Generator for Wind Energy Conversion". International Journal of Intelligent Engineering & Systems, vol.15, no.1, pp.549-562, 2022. https://doi: 10.22266/ijies2022.0228.50
[9]  Kaloi, G. S., Baloch, M. H., Kumar, M., Soomro, D. M., Chauhdary, S. T., Memon, A. A., & Ishak, D." An LVRT scheme for grid-connected DFIG based WECS using state feedback linearization control technique". Electronics, vol.8, no.7, pp. 777,2019 .https://doi.org/10.3390/electronics8070777
[10]    Itouchene, H., Amrane, F., Boudries, Z., Mekhilef, S., Benbouhenni, H., & Bizon, N. "Enhancing the performance of grid-connected DFIG systems using prescribed convergence law". Scientific Reports, vol.15,no.1, pp.28550, 2025. https://doi.org/10.1038/s41598-025-13847-x.
 [11]   Amira, L., Tahar, B., & Abdelkrim, M. "Sliding mode control of doubly-fed induction generator in wind energy conversion system". In: 2020 8th International Conference on Smart Grid (icSmartGrid). IEEE, 2020. pp. 96-100.  https://doi: 10.1109/icSmartGrid49881.2020.9144778
[12] Hichem, H., Abderrazak, T. A., Iliace, A., Bendelhoum, M. S., & Abdelkrim, B." A new robust SIDA-PBC approach to control a DFIG". Bulletin of Electrical Engineering and Informatics, vol.12, no.3, pp. 1310-1317,2023. https://doi.org/10.11591/eei.v12i3.2155
[13] HEMEYINE, Ahmed Vall, ABBOU, Ahmed, TIDJANI, Naoual, et al. "Robust takagi sugeno fuzzy models control for a variable speed wind turbine based a DFI-generator". International Journal of Intelligent Engineering and Systems, vol.13, no 3, pp. 90-100,2020.https:doi:  10.22266/ijies2020.0630.09
[14] ALLALI, Izzeddine and DEHIBA, Boubekeur. “Passivity Based Control of Doubly Fed Induction Generator Using an Interval Type-2 Fuzzy Logic Controller”. The Journal of Engineering and Exact Sciences, vol. 10, no 9, pp. 21012-21012, 2024. https: Doi: 10.18540/jcecvl10iss9pp21012
[15] Ortega, R., & Sira-Ramírez, H. “ Lagrangian modeling and control of switch regulated DC-to-DC power converters”. In Control Using Logic-Based Switching , Berlin, Heidelberg: Springer Berlin Heidelberg,2005, pp. 151-161. https://doi.org/10.1007/BFb0036092
 [16] ORTEGA, Romeo et GARCIA-CANSECO, Eloisa. Interconnection and damping assignment passivity-based control: A survey. European Journal of control, vol. 10, no 5, pp. 432-450, 2004. https://doi.org/10.3166/ejc.10.432-450
[17] Minka, I., Essadki, A., Mensou, S., & Nasser, T. (2019)." Primary frequency control applied to the wind turbine based on the DFIG controlled by the ADRC". International Journal of Power Electronics and Drive System, vol. 10, no. 2, p. 1049-1058,2019.https:doi:   10.11591/ijpeds.v10.i2
[18]  Abbas, A. K., Al Mashhadany, Y., Hameed, M. J., & Algburi, S. "Review of intelligent control systems with robotics". Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol.10, no.4, pp.734-753,2022. https://doi.org/10.52549/ijeei.v10i4.3628
 [19] Kheir Saadaoui, B. B., Assas, O., & Khodja, M. A. KHODJA, Mohammed Abdallah. "Type-1 and type-2 fuzzy sets to control a nonlinear dynamic system". Revue d'Intelligence Artificielle, vol. 33, no. 1, pp. 1-7,2019. https://doi.org/10.18280/ria.330101
[20] Acikgoz, H., Kececioglu, O., Gani, A., Tekin, M., & Sekkeli, M. "Robust control of shunt active power filter using interval type-2 fuzzy logic controller for power quality improvement". Tehnicki Vjesnik-Technical Gazette, vol24, 2017. https://doi.org/10.17559/TV-20161213004749
 [21] Yan, S. R., Dai, Y., Shakibjoo, A. D., Zhu, L., Taghizadeh, S., Ghaderpour, E., & Mohammad zadeh," A fractional-order multiple-model type-2 fuzzy control for interconnected power systems incorporating renewable energies and demand response". Energy Reports, vol.12, pp. 187-196,2024 .https://doi.org/10.1016/j.egyr.2024.06.018
[22]WU, Wen Jun et XUE, Hua. Passivity-based control strategies of doubly fed induction wind power generator without speed sensors. Applied Mechanics and Materials, vol. 380, pp. 3124-3128, 2013. https://doi.org/10.4028/www.scientific.net/AMM.380-384.3124
[23]HUANG, Jiawei, WANG, Honghua, et WANG, Chong. Passivity-based control of a doubly fed induction generator system under unbalanced grid voltage conditions. Energies, vol. 10, no 8, pp. 1139, 2017. https://doi.org/10.3390/en10081139
[24] HICHEM, Hamiani, ABDELLAH, Mansouri, ABDERRAZAK, Tadjeddine Ali, et al. A wind turbine sensorless automatic control systems, analysis, modelling and development of IDA-PBC method. International Journal of Power Electronics and Drive Systems, vol. 11, no 1, pp. 45, 2020.
       https://doi.org/http://doi.org/10.11591/ijpeds.v11.i1.pp45-55
 [25] Brogliato, B., Lozano, R., Maschke, B., Egeland, O., Brogliato, B., Lozano, R., ... & Egeland, O." Passivity-based control. Dissipative systems analysis and control: Theory and applications",  Cham: Springer International Publishing, pp. 491-573, 2019. https://doi.org/10.1007/978-3-030-19420-8_7
[26] Yang, B., Yu, T., Shu, H., Zhang, Y., Chen, J., Sang, Y., & Jiang, L. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine". Renewable energy, vol. 119, p. 577-589, 2018.https://doi.org/10.1016/j.renene.2017.12.047
[27] Belkhier, Y., Achour, A., Bures, M., Ullah, N., Bajaj, M., Zawbaa, H. M., & Kamel, S. "Interconnection and damping assignment passivity-based non-linear observer control for efficiency maximization of permanent magnet synchronous motor". Energy Reports, vol. 8, pp. 1350-1361. 2022, https://doi.org/10.1016/j.egyr.2021.12.057
[28] Sahri, Y., Tamalouzt, S., Lalouni Belaid, S., Bacha, S., Ullah, N., Ahamdi, A. A. A., & Alzaed, A. N. "Advanced fuzzy 12 dtc control of doubly fed induction generator for optimal power extraction in wind turbine system under random wind conditions". Sustainability, vol.13, no.21, pp. 11593, 2021.https://doi.org/10.3390/su132111593
[29] Oualah, O., Kerdoun, D., et Boumassata, A." Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system". Electrical Engineering & Electromechanics, vol.2, pp. 86-92, 2023. https://doi.org/10.20998/2074-272X.2023.2.13
[30] Adeyanju, A. A. "The Influence of Rotor Separation on The Performance of a Dual-Rotor Wind Turbine". Journal of Namibian Studies: History Politics Culture, vol. 35, pp. 4684-4702, 2023. https://doi.org/10.59670/jns.v35i.4573
[31] Carpintero‐Renteria, M., Santos‐Martin, D., Lent, A., & Ramos, C,  Wind turbine power coefficient models based on neural networks and polynomial fitting., IET Renewable Power Generation, vol.14,no. 11 ,pp. 1841-1849, 2020. https://doi.org/10.1049/iet-rpg.2019.1162
[32] Castillo, OC, Andrade, VR, Rivas, JJR, & González, RO., Comparison of power coefficients in wind turbines considering the tip speed ratio and blade pitch angle., Energies , vol.16,no.6 ,pp2774, 2023.
 [33] Mousa, H. H., Youssef, A. R., & Mohamed, E. E. "Hybrid and adaptive sectors P&O MPPT algorithm-based wind generation system". Renewable Energy, vol.145, pp. 1412-1429,2020.
[34] Kadri, A., Marzougui, H., Aouiti, A., & Bacha, F., Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system, Energy, 192,pp 116518, 2020. https://doi.org/10.1016/j.energy.2019.116518
 [35] Cherifi, Djamila, Yahia Miloud, and Mohamed Mostefai. "Performance of Neutral Point Clamped Five Level Inverter Using Space Vector Modulation Control Fed by DPC-VF-SVM Rectifier." WSEAS Transactions on Power Systems, vol. 16 ,pp. 275-287,2021.                                                                        https://doi.org/ 10.37394/232016.2021.16.28
 [36]Wu, D., & Mendel, J. M. "Recommendations on designing practical interval type-2 fuzzy      systems". Engineering Applications of Artificial Intelligence, vol.85, pp. 182-193, 2019.
[37] Liang, Q., & Mendel, J. M." Interval type-2 fuzzy logic systems: theory and design". IEEE Transactions on Fuzzy systems, vol.8, no.5, p. 535-550,2000. https://doi: 10.1109/91.873577
 [38] Milles, A., Merabet, E., Benbouhenni, H., Debdouche, N., & Colak, I. " Robust control technique for wind turbine system with interval type-2 fuzzy strategy on a dual star induction generator". Energy Reports,vol.11, pp. 2715-2736,2024. https://doi.org/10.1016/j.egyr.2024.01.060
[39] Li, K., Zhang, X., & Han, Y. "Robot path planning based on interval type-2 fuzzy controller optimized by an improved Aquila optimization algorithm". IEEE Access, 2023.
 [40]Magaji, N., Mustafa, M. W. B., Lawan, A. U., Tukur, A., Abdullahi, I., & Marwan, M. "Application of Type 2 Fuzzy for Maximum Power Point Tracker for Photovoltaic System". Processes, vol. 10, no.8, pp. 1530, 2022. https://doi.org/10.3390/pr10081530
[41] Chen, C., Wu, D., Garibaldi, J. M., John, R. I., Twycross, J., & Mendel, J. M. "Comprehensive study of the efficiency of type-reduction algorithms". IEEE Transactions on Fuzzy Systems, vol.29,no. 6, pp. 1556-1566,2020. https://doi: 10.1109/TFUZZ.2020.2981002
[42] LATHAMAHESWARI, M., NAGARAJAN, D., KAVIKUMAR, J., et al. "Triangular interval type-2 fuzzy soft set and its application". Complex & Intelligent Systems, vol.6, pp. 531-544,2020. https://doi.org/10.1007/s40747-020-00151-6