Ali, A., Soliman, M., Abdelrhman, Y., Hasab-allah, I. (2023). Investigation of AL/CU Bimetallic Tube Cladding Process by Severe Plastic Deformation. JES. Journal of Engineering Sciences, 51(1), 1-15. doi: 10.21608/jesaun.2022.154690.1160
Ahlam Ali; M-Emad Soliman; Yasser Abdelrhman; Ibrahim Hasab-allah. "Investigation of AL/CU Bimetallic Tube Cladding Process by Severe Plastic Deformation". JES. Journal of Engineering Sciences, 51, 1, 2023, 1-15. doi: 10.21608/jesaun.2022.154690.1160
Ali, A., Soliman, M., Abdelrhman, Y., Hasab-allah, I. (2023). 'Investigation of AL/CU Bimetallic Tube Cladding Process by Severe Plastic Deformation', JES. Journal of Engineering Sciences, 51(1), pp. 1-15. doi: 10.21608/jesaun.2022.154690.1160
Ali, A., Soliman, M., Abdelrhman, Y., Hasab-allah, I. Investigation of AL/CU Bimetallic Tube Cladding Process by Severe Plastic Deformation. JES. Journal of Engineering Sciences, 2023; 51(1): 1-15. doi: 10.21608/jesaun.2022.154690.1160
Investigation of AL/CU Bimetallic Tube Cladding Process by Severe Plastic Deformation
1Egyptian German Faculty of Technology - Assiut, Egypt
2Mechanical Design and Production Engingeering Department, Faculty of Engineering, Assiut University, Assiut 71516, Egypt
Abstract
In this paper, a new cladding process is proposed and implemented on a bimetallic tube of copper and aluminum. Obtaining a good mechanical bond between the tube’s layers using simple setup components with low required process force and without using heating are the most distinguishing feature of this study. The objective of this paper is to study the effect of using three different spherical tipped punch diameters (21 mm, 21.6 mm, and 22 mm) on the cladding process. A spherical punch with a slightly enlarged spherical tip was pressed into the clad tube. To study the dynamical analysis of the developed process, an FE model was developed using ANSYS workbench®. The bonding of an AL6082T6 Aluminum tube (as the clad tube) to a pure copper tube (as the base tube) was studied. FE analysis results showed that increasing ball tipped punch diameter leads to an increase in the required process force, the deformation magnitude, the equivalent plastic strain, the maximum principal stress, and the maximum principal elastic strain values. The required process force was measured experimentally and by FE simulation for the three different ball tipped punch diameters. The average values of the FE process forces were found to be 21 KN, 39 KN and 48 KN respectively for the mentioned diameters, while experimentally the average forces values were found to be 13.3 KN, 33 KN and 39 KN for the mentioned diameters, respectively. A 10 KN force was required to dismantle the bimetallic tube layers using shear punch test.
[1] G. F. D. Mohammadreza Baghaei, “Punch Plastic Deformation Pipe Cladding (PPDPC) as a Novel Tube Cladding Metho,” J. Adv. Mater. Process., vol. 4, no. 2, pp. 21–28, 2016, [Online]. Available: http://jmatpro.iaun.ac.ir/article_562483_9717e0b70eabee7b9723f51cdab738aa.pdfhttp://jmatpro.iaun.ac.ir/article_562483_9717e0b70eabee7b9723f51cdab738aa.pdf
[2] Z.-S. Fan, S.-T. Huang, and J.-H. Deng, “Cladding of aluminum alloy 6061-T6 to mild steel by an electromagnetic tube bulging process: finite element modeling,” Adv. Manuf., vol. 7, no. 1, pp. 73–83, Mar. 2019, doi: 10.1007/s40436-018-00247-w.http://link.springer.com/10.1007/s40436-018-00247-w
[3] J. Salehi, A. Rezaeian, and M. R. Toroghinejad, “Fabrication and characterization of a bimetallic Al/Cu tube using the tube sinking process,” Int. J. Adv. Manuf. Technol., vol. 96, no. 1–4, pp. 153–159, Apr. 2018, doi: 10.1007/s00170-017-1485-5.http://link.springer.com/10.1007/s00170-017-1485-5
[4] M. S. Mohebbi and A. Akbarzadeh, “Fabrication of copper / aluminum composite tubes by spin-bonding process : experiments and modeling,” Int J Adv Manuf Technol, vol. 54, pp. 1043–1055, 2011, doi: 10.1007/s00170-010-3016-5.10.1007/s00170-010-3016-5
[5] N. Shi, W. xian Wang, T. ting Zhang, H. sheng Chen, W. Chen, and R. yi Feng, “Interface Bonding and Deformation Behavior of 6061Al/AZ31Mg Composite Tubes Fabricated by Stagger Spinning,” Trans. Indian Inst. Met., 2021, doi: 10.1007/s12666-020-02042-3.https://doi.org/10.1007/s12666-020-02042-3
[6] R. Lapovok, H. P. Ng, and Y. Estrin, “Bimetallic copper – aluminium tube by severe plastic deformation,” Scr. Mater., vol. 66, no. 12, pp. 1081–1084, 2012, doi: 10.1016/j.scriptamat.2012.03.004.http://dx.doi.org/10.1016/j.scriptamat.2012.03.004
[7] M. Knezevic, M. Jahedi, Y. P. Korkolis, and I. J. Beyerlein, “Material-based design of the extrusion of bimetallic tubes,” Comput. Mater. Sci., vol. 95, pp. 63–73, 2014, doi: 10.1016/j.commatsci.2014.07.021.http://dx.doi.org/10.1016/j.commatsci.2014.07.021
[8] “Fabrication of Al/Mg Bimetallic Thin-Walled Ultrafine-Grained Tube by Severe Plastic Deformation | SpringerLink.” https://link.springer.com/article/10.1007/s11665-021-06514-5 (accessed Aug. 28, 2022).https://link.springer.com/article/10.1007/s11665-021-06514-5
[9] Z. Chen, K. Ikeda, T. Murakami, T. Takeda, and J. X. Xie, “Fabrication of composite pipes by multi-billet extrusion technique,” J. Mater. Process. Technol., vol. 137, no. 1-3 SPEC, pp. 10–16, 2003, doi: 10.1016/S0924-0136(02)01052-X.
[10] M. Zheng, T. Zhao, H. Gao, H. Teng, and J. Hu, “Effect of cone size on the bonding strength og bimetallic composite pipes produced by drawing approach,” Arch. Met. Mater., vol. 63, no. 1, pp. 451–456, 2018, doi: 10.24425/118960.
[11] Q. Zhang, Y. Zhang, M. Cao, N. Ben, X. Ma, and H. Ma, “Joining process for copper and aluminum tubes by rotary swaging method,” Int. J. Adv. Manuf. Technol., vol. 89, no. 1–4, pp. 163–173, 2017, doi: 10.1007/s00170-016-8994-5.
[12] S. Shirzad, R. Hashemi, and M. Rajabi, “Finite Element Simulation of the Parallel Tubular Channel Angular Pressing Process for Al–Cu Bimetallic Tube with Experimental Verification,” Trans. Indian Inst. Met., 2021, doi: 10.1007/s12666-021-02398-0.https://doi.org/10.1007/s12666-021-02398-0
[13] W. Li, Q. Wen, X. Yang, Y. Wang, D. Gao, and W. Wang, “Interface microstructure evolution and mechanical properties of Al/Cu bimetallic tubes fabricated by a novel friction-based welding technology,” Mater. Des., vol. 134, pp. 383–393, 2017, doi: 10.1016/j.matdes.2017.08.065.https://doi.org/10.1016/j.matdes.2017.08.065
[14] H. Haghighat and M. M. Mahdavi, “Analysis and FEM simulation of extrusion process of bimetal tubes through rotating conical dies,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 23, no. 11, pp. 3392–3399, 2013, doi: 10.1016/S1003-6326(13)62879-4.
[15] M. Fattouh, “Some investigations on the ballizing process,” Wear, vol. 134, no. 2, pp. 209–219, 1989, doi: 10.1016/0043-1648(89)90125-7.
[16] S. S. G. Lee, S. C. Tam, and N. H. Loh, “Ball burnishing of 316L stainless steel,” J. Mater. Process. Tech., vol. 37, no. 1–4, pp. 241–251, 1993, doi: 10.1016/0924-0136(93)90094-M.
[17] I. I. Edriys and M. Fattouh, “Characteristics of Finished Holes By Ballizing Process,” ERJ. Eng. Res. J., vol. 36, no. 4, pp. 403–415, 2013, doi: 10.21608/erjm.2013.67080.
[18] T. Dyl, “The Numerical and Experimental Analysis of Ballizing Process of Steel Tubes,” Arch. Metall. Mater., vol. 62, no. 2, pp. 807–814, 2017, doi: 10.1515/amm-2017-0120.
[19] B. Saleh, I. Maher, Y. Abdelrhman, M. Heshmat, and O. Abdelaal, “Adaptive neuro-fuzzy inference system for modelling the effect of slurry impacts on PLA material processed by FDM,” Polymers (Basel)., vol. 13, no. 1, pp. 1–17, 2021, doi: 10.3390/polym13010118.
[20] Y. M. Abd-Elrhman, A. Abouel-Kasem, K. M. Emara, and S. M. Ahmed, “Effect of impact angle on slurry erosion behavior and mechanisms of carburized AISI 5117 steel,” J. Tribol., vol. 136, no. 1, 2014, doi: 10.1115/1.4025874.
[21] Y. Abdelrhman, A. Abouel-Kasem, K. Emara, and S. Ahmed, “The effect of boronizing heat treatment on the slurry erosion of AISI 5117,” Ind. Lubr. Tribol., vol. 70, no. 7, pp. 1176–1186, 2018, doi: 10.1108/ILT-01-2017-0009.
[22] MATWEB, “Material property data,” Mater. Prop. Data, no. September 2016, pp. 1–27, 2018, [Online]. Available: http://www.matweb.com/http://www.matweb.com/
[23] M. R. Standley and M. Knezevic, “Towards Manufacturing of Ultrafine-Laminated Structures in Metallic Tubes by Accumulative Extrusion Bonding,” Metals (Basel)., vol. 11, no. 3, p. 389, Mar. 2021, doi: 10.3390/met11030389.
[24] A. L. de Moraes Costa, U. S. da Silva, and H. S. Valberg, “On the friction conditions in FEM simulations of cold extrusion,” Procedia Manuf., vol. 47, pp. 231–236, 2020, doi: 10.1016/j.promfg.2020.04.202.https://doi.org/10.1016/j.promfg.2020.04.202
[25] M. Deepak Sandar and S. Yasasvi, “Design and Analysis of Aluminium 6082-T6 Piston,” Int. J., vol. 3, no. 11, pp. 39–47, 2017, [Online]. Available: http://www.ijirst.org/articles/IJIRSTV3I11035.pdfhttp://www.ijirst.org/articles/IJIRSTV3I11035.pdf
[26] M. Soltantabar and A. K. Ali, “Finite Element Analysis of Copper Deformed By Conventional Forward Extrusion,” vol. 10, no. 6, pp. 1–5, 2014.
[27] A. Alloy, T. En, and N. Tori, “Experimental Analysis of the Behaviour of Aluminium Alloy EN 6082AW T6 at High Temperature,” Metals (Basel)., vol. 7, p. 15, 2017, doi: 10.3390/met7040126.
[28] D. B. and R. P. Sujit Kumar Jha, “Experimental Analysis of Microstructure and Mechanical,” Int. J. Automot. Mech. Eng., vol. 11, no. June, pp. 2317–2331, 2015, doi: 95http://dx.doi.org/10.15282/ijame.11.2015.14.0195.
[29] O. Bartier, X. Hernot, and G. Mauvoisin, “Theoretical and experimental analysis of contact radius for spherical indentation,” Mech. Mater., vol. 42, no. 6, pp. 640–656, 2010, doi: 10.1016/j.mechmat.2010.03.003.http://dx.doi.org/10.1016/j.mechmat.2010.03.003