Shaaban, M., Abdel-Naiem, M., A. A. Senoon, A., A. Kenawi, M. (2023). Interaction Analysis between Existing Loaded Piles and Braced Excavation Design Parameters. JES. Journal of Engineering Sciences, 51(3), 189-206. doi: 10.21608/jesaun.2023.187262.1199
Mohamed Shaaban; Mostafa Abdel-Naiem; Abdel-Aziz A. A. Senoon; Mamdouh A. Kenawi. "Interaction Analysis between Existing Loaded Piles and Braced Excavation Design Parameters". JES. Journal of Engineering Sciences, 51, 3, 2023, 189-206. doi: 10.21608/jesaun.2023.187262.1199
Shaaban, M., Abdel-Naiem, M., A. A. Senoon, A., A. Kenawi, M. (2023). 'Interaction Analysis between Existing Loaded Piles and Braced Excavation Design Parameters', JES. Journal of Engineering Sciences, 51(3), pp. 189-206. doi: 10.21608/jesaun.2023.187262.1199
Shaaban, M., Abdel-Naiem, M., A. A. Senoon, A., A. Kenawi, M. Interaction Analysis between Existing Loaded Piles and Braced Excavation Design Parameters. JES. Journal of Engineering Sciences, 2023; 51(3): 189-206. doi: 10.21608/jesaun.2023.187262.1199
Interaction Analysis between Existing Loaded Piles and Braced Excavation Design Parameters
3Assoc. professor, Dept. of Civil. Eng., Sohag University, Sohag, Egypt
Abstract
Three-dimensional numerical analyses are conducted using the finite element software PLAXIS 3D to gain insight into the interaction behavior between deep excavation and adjacent piled foundations in fully saturated sand. Effects of excavation width and depth, the distance between strut level and the excavation surface with each excavation stage, strut stiffness, diaphragm wall stiffness, and diaphragm wall depth are examined during the adjacent excavation. In practice, incorrect values of the braced excavation design parameters may result in an uneconomical or even unsafe design. The analyses revealed that increasing the excavation width or depth has a significant influence on the adjacent pile group behavior. Additionally, it is also observed that reducing the distance between the strut level and the excavation surface with each excavation stage, increasing the struts stiffness, increasing diaphragm wall thickness or depth, and reducing the horizontal or vertical span of struts can assist to reduce settlement and tilting of the pile group induced by the adjacent excavation.
[1] W.-D. Wang, C. W. W. Ng, Y. Hong, Y. Hu, and Q. Li, “Forensic study on the collapse of a high-rise building in Shanghai: 3D centrifuge and numerical modelling,” Géotechnique, vol. 69, no. 10, pp. 847–862, 2019.
[2] W. Wang, Q. Li, and Y. Hu, “Collapse of a high-rise building with pretensioned high-strength concrete piles,” Proc. Inst. Civ. Eng. - Forensic Eng., vol. 173, no. 1, pp. 3–12, Feb. 2020, doi: 10.1680/jfoen.19.00012.
[3] R. Zhang, W. Zhang, and A. T. C. Goh, “Numerical investigation of pile responses caused by adjacent braced excavation in soft clays,” Int. J. Geotech. Eng., pp. 1–15, 2018.
[4] M. G. Shaikhoun, “Interaction behavior between existing building piles and piles supporting excavation (M. Sc. Thesis),” 2017.
[5] R. Zhang, A. T. C. Goh, and W. Zhang134, “3D numerical analysis of passive pile groups adjacent to deep braced excavation in soft clay,” J. ISSN TBA, vol. 3, 2020.
[6] D. E. Ong, C. E. Leung, and Y. K. Chow, “Pile behavior due to excavation-induced soil movement in clay. I: Stable wall,” J. Geotech. Geoenvironmental Eng., vol. 132, no. 1, pp. 36–44, 2006.
[7] A. T. C. Goh, K. S. Wong, C. I. Teh, and D. Wen, “Pile Response Adjacent to Braced Excavation,” J. Geotech. Geoenvironmental Eng., vol. 129, no. 4, pp. 383–386, Apr. 2003, doi: 10.1061/(ASCE)1090-0241(2003)129:4(383).
[8] M. Korff, Response of piled buildings to the construction of deep excavations, vol. 13. IOS Press, 2013.
[9] Y. Tan, R. Huang, Z. Kang, and W. Bin, “Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: Building response,” J. Perform. Constr. Facil., vol. 30, no. 6, p. 4016040, 2016.
[10] J. Shi, J. Wei, C. W. W. Ng, and H. Lu, “Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand,” Comput. Geotech., vol. 116, p. 103216, Dec. 2019, doi: 10.1016/j.compgeo.2019.103216.
[11] M. A. Soomro, N. Mangi, W.-C. Cheng, and D. A. Mangnejo, “The Effects of Multipropped Deep Excavation-Induced Ground Movements on Adjacent High-Rise Building Founded on Piled Raft in Sand,” Adv. Civ. Eng., vol. 2020, pp. 1–12, Oct. 2020, doi: 10.1155/2020/8897507.
[12] C. W. W. Ng, M. Shakeel, J. Wei, and S. Lin, “Performance of Existing Piled Raft and Pile Group due to Adjacent Multipropped Excavation: 3D Centrifuge and Numerical Modeling,” J. Geotech. Geoenvironmental Eng., vol. 147, no. 4, p. 4021012, Apr. 2021, doi: 10.1061/(ASCE)GT.1943-5606.0002501.
[13] H. Karira, A. Kumar, T. H. Ali, D. A. Mangnejo, and N. Mangi, “A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis,” Geomech. Eng., vol. 30, no. 2, pp. 169–185, 2022, doi: 10.12989/gae.2022.30.2.169.
[14] C. W. W. Ng, J. Wei, H. Poulos, and H. Liu, “Effects of Multipropped Excavation on an Adjacent Floating Pile,” J. Geotech. Geoenvironmental Eng., vol. 143, no. 7, p. 04017021, Jul. 2017, doi: 10.1061/(ASCE)GT.1943-5606.0001696.
[15] R. Feng, Q. Zhang, and S. Liu, “Experimental Study of the Effect of Excavation on Existing Loaded Piles,” J. Geotech. Geoenvironmental Eng., vol. 146, no. 9, p. 4020091, 2020.
[16] M. Shakeel and C. W. W. Ng, “Settlement and load transfer mechanism of a pile group adjacent to a deep excavation in soft clay,” Comput. Geotech., vol. 96, pp. 55–72, Apr. 2018, doi: 10.1016/j.compgeo.2017.10.010.
[17] Y.-Y. Liang, N.-W. Liu, F. Yu, X.-N. Gong, and Y.-T. Chen, “Prediction of Response of Existing Building Piles to Adjacent Deep Excavation in Soft Clay,” Adv. Civ. Eng., vol. 2019, pp. 1–11, Dec. 2019, doi: 10.1155/2019/8914708.
[18] Q. T. Huynh, T. Boonyatee, and S. Keawsawasvong, “Behavior of a Deep Excavation and Damages on Adjacent Buildings: a Case Study in Vietnam,” Transp. Infrastruct. Geotechnol., pp. 1–29, 2020.
[19] H. Karira, A. Kumar, T. H. Ali, D. A. Mangnejo, and L. Yaun, “Numerical investigation of responses of a piled raft to twin excavations: Role of sand density,” Geomech. Eng., 2022, doi: 10.12989/gae.2022.31.1.053.
[20] J. Shi et al., “Effects of construction sequence of double basement excavations on an existing floating pile,” Tunn. Undergr. Sp. Technol., vol. 119, p. 104230, Jan. 2022, doi: 10.1016/j.tust.2021.104230.
[21] Y. Liu, B. Xiang, and M. Fu, “Influence of Dewatering in Deep Excavation on Adjacent Pile Considering Water Insulation Effect of Retaining Structures,” Geotech. Geol. Eng., vol. 37, no. 6, pp. 5123–5130, 2019.
[22] M. Korff, R. J. Mair, and F. A. F. Van Tol, “Pile-Soil Interaction and Settlement Effects Induced by Deep Excavations,” J. Geotech. Geoenvironmental Eng., vol. 142, no. 8, p. 04016034, Aug. 2016, doi: 10.1061/(ASCE)GT.1943-5606.0001434.
[23] R. B. J. Brinkgreve, L. Zampich, and N. R. Manoj, “PLAXIS 3D CONNECT Edition V20 tutorial manual,” Delft Univ. Technol. PLAXIS bv, Netherlands, 2019.
[24] C. W. W. Ng, T. L. Y. Yau, J. H. M. Li, and W. H. Tang, “New Failure Load Criterion for Large Diameter Bored Piles in Weathered Geomaterials,” J. Geotech. Geoenvironmental Eng., vol. 127, no. 6, pp. 488–498, Jun. 2001, doi: 10.1061/(ASCE)1090-0241(2001)127:6(488).
[25] C.-Y. Ou, Deep excavation: theory and practice. CRC Press, 2006.
[26] T. P. T. Dao, “Validation of PLAXIS embedded piles for lateral loading (M. Sc. Thesis),” 2011.
[27] F. Tschuchnigg and H. F. Schweiger, “The embedded pile concept – Verification of an efficient tool for modelling complex deep foundations,” Comput. Geotech., vol. 63, pp. 244–254, Jan. 2015, doi: 10.1016/j.compgeo.2014.09.008.
[28] I. Al-abboodi and T. T. Sabbagh, “Numerical Modelling of Passively Loaded Pile Groups,” Geotech. Geol. Eng., vol. 37, no. 4, pp. 2747–2761, Aug. 2019, doi: 10.1007/s10706-018-00791-z.
[29] T. Benz, “Small-strain stiffness of soils and its numerical consequences (Ph. D. Thesis),” Stuttgart, Inst. f. Geotechnik., 2007.
[30] Y.-M. Hsieh, P. H. Dang, and H.-D. Lin, “How Small Strain Stiffness and Yield Surface Affect Undrained Excavation Predictions,” Int. J. Geomech., vol. 17, no. 3, p. 04016071, Mar. 2017, doi: 10.1061/(ASCE)GM.1943-5622.0000753.
[31] H. F. Schweiger, “Results from numerical benchmark exercises in geotechnics,” in Proc. 5th European Conf. Numerical Methods in Geotechnical Engineering (P. Mestat, ed.), Presses Ponts et chaussees, Paris, 2002, pp. 305–314.
[32] L. M. Zhang and A. M. Y. Ng, “Probabilistic limiting tolerable displacements for serviceability limit state design of foundations,” Géotechnique, vol. 55, no. 2, pp. 151–161, Mar. 2005, doi: 10.1680/geot.55.2.151.59527.
[33] C. Xu, K. Yang, X. Fan, J. Ge, and L. Jin, “Numerical Investigation on Instability of Buildings Caused by Adjacent Deep Excavation,” J. Perform. Constr. Facil., vol. 35, no. 5, p. 4021040, 2021.