• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
A. Samak, M., M. Lotfy, E., E. Abdel Latif, E., A. Ahmed, M. (2024). RC beams under blast loads: Numerical simulation and machine learning modeling. JES. Journal of Engineering Sciences, 52(2), 101-128. doi: 10.21608/jesaun.2024.256000.1294
Mahmoud A. Samak; Ehab M. Lotfy; Erfan E. Abdel Latif; Manar A. Ahmed. "RC beams under blast loads: Numerical simulation and machine learning modeling". JES. Journal of Engineering Sciences, 52, 2, 2024, 101-128. doi: 10.21608/jesaun.2024.256000.1294
A. Samak, M., M. Lotfy, E., E. Abdel Latif, E., A. Ahmed, M. (2024). 'RC beams under blast loads: Numerical simulation and machine learning modeling', JES. Journal of Engineering Sciences, 52(2), pp. 101-128. doi: 10.21608/jesaun.2024.256000.1294
A. Samak, M., M. Lotfy, E., E. Abdel Latif, E., A. Ahmed, M. RC beams under blast loads: Numerical simulation and machine learning modeling. JES. Journal of Engineering Sciences, 2024; 52(2): 101-128. doi: 10.21608/jesaun.2024.256000.1294

RC beams under blast loads: Numerical simulation and machine learning modeling

Article 4, Volume 52, Issue 2, March and April 2024, Page 101-128  XML PDF (2.47 MB)
Document Type: Research Paper
DOI: 10.21608/jesaun.2024.256000.1294
View on SCiNiTO View on SCiNiTO
Authors
Mahmoud A. Samak1; Ehab M. Lotfy1; Erfan E. Abdel Latif1; Manar A. Ahmed email orcid 2
1Civil Engineering Department, Faculty of Engineering, Suez Canal University
2Civil Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, Ismailia
Abstract
Abstract
The use of explosives to target civilian buildings and other structures around the world is becoming a growing problem in modern societies. This paper focuses on RC beams exposed to free-air blast loads. The paper first presents a parametric study on the behavior of RC beams subjected to blast loads using finite element simulation and then proposes an Artificial Neural Network (ANN) model to predict that behavior in a simple and easy manner. The ABAQUS program is used to simulate RC beams under blast loads. Experimental data was collected from the literature and used to validate the ABAQUS models. Deflection, reaction forces, ultimate stress, ultimate strain, and failure mode of RC beams are investigated. The considered design parameters in the parametric study are the characteristic compressive strength of concrete (fcu), the transverse reinforcement ratio (ρT%), the longitudinal reinforcement ratio (ρL%), and the scaled distance (Z). In this paper, the proposed ANN model was trained and tested using datasets produced using ABAQUS. The input parameters of the ANN model are TNT weight, standoff distance (D), characteristic compressive strength of concrete, transverse reinforcement ratio, longitudinal reinforcement ratio, width-to-thickness ratio (b/t), and length-to-thickness ratio (L/t). The predicted behavior using the ANN model showed the credibility of the model. The results indicated that L/t, b/t, and Z have significant effects on the behavior of RC beams under blast loads compared with fcu, ρT%, and ρL%, the cracks area increases with the decrease in Z, fcu, and b/t and decreases with L/t decrease.
Keywords
Explosion waves; Strain rate; Failure mode; ABAQUS simulation of RC beams; ANN modeling
Main Subjects
Civil Engineering: structural, Geotechnical, reinforced concrete and steel structures, Surveying, Road and traffic engineering, water resources, Irrigation structures, Environmental and sanitary engineering, Hydraulic, Railway, construction Management.
References
[1]      Housing and Building National Research Center, (2016), "Egyptian specification for blast resistant buildings", SPEC 905. Cairo.

[2]      American Concrete Institute (ACI) 370r-14, (2014), "Report for the design of concrete structures for blast effects".

[3]      Unified Facilities Criteria (UFC) 3-340-02, (2008), "Structures to resist the effects of accidental explosions", U.S. Department of Defense (DoD).

             www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc

[4]      Zhao, L., Hao, Y., Wang, Q., Yang, C., Yao, H., Jia, X., (2023), “Damage Zone of the Reinforced Concrete Beam under Rectangular Explosive Contact Explosions”, Buildings, 13, 1403.

             https://doi.org/10.3390/buildings13061403

[5]        Gomes, G.d.J., Lúcio, V.J.d.G., Cisma¸siu, C., Mingote, J.L., (2023), “Experimental Validation and Numerical Analysis of a High-Performance Blast Energy-Absorbing System for Building Structures”, Buildings, 13, 601.

             https://doi.org/10.3390/buildings13030601

[6]      Robert Laszlo, Emilian Ghicioi, Florea Dinu, Calin Neagu, Dan Dubina, (2024), “Passive blast protection of buildings by ductile steel-based envelopes”, MATEC Web of Conferences, 389, 00040.

             https://doi.org/10.1051/matecconf/202438900040

[7]      Chaozhi Yang, Zhengxiang Huang, Xin Jia, Wei Shang, Taian Chen, (2024), “Analytical model for predicting localized damage in RC beams under contact explosion”, International Journal of Impact Engineering, 185, 104870.

             https://doi.org/10.1016/j.ijimpeng.2023.104870

[8]       Chuanjing Li, Hassan Aoude, (2023), “Behavior of UHPFRC-retrofitted RC beams with varying strengthening configurations under single and repeated blast loading”, Cement and Concrete Composites, 142, 105180.

             https://doi.org/10.1016/j.cemconcomp.2023.105180

[9]      Yu Liu, Hong Hao, Yifei Hao, (2023), “Damage prediction of RC columns with various levels of corrosion deteriorations subjected to blast loading”, Journal of Building Engineering, 80, 108019.

             https://doi.org/10.1016/j.jobe.2023.108019

[10]    A. Abbas, S. Arshad, G. Mohanned, Z. Ayman, I. Teghreed, A. Ali, A. Ibrahim, (2023), “Enhancement of RC T-beams toughness using laced stirrups reinforcement for blast response predictions”, Structural Concrete, 24(3), 3839-3856.

            https://doi.org/10.1002/suco.202200894

[11]     Y. Temsah, A. Jahami, J. Khatib, and M. Sonebi, (2018), “Numerical analysis of a reinforced concrete beam under blast loading”, MATEC Web Conf., 149, p. 02063.

             doi: 10.1051/matecconf/201814902063

[12]     V. Karlos, G. Solomos, and B. Viaccoz, (2013), "Calculation of blast loads for application to structural components", Luxembourg: Publications Office of the European Union, European Laboratory for Structural Assessment.

               doi:10.2788/61866

[13]    B. Samali, G. McKenzie, C. Zhang, and E. Ancich, (2018), “Review of the basics of state of the art of blast loading”, Asian J. Civ. Eng., 19(7), 775–791.

             doi: 10.1007/s42107-018-0063-y

[14]     H. Draganić, G. Gazić, and D. Varevac, (2019), “Experimental investigation of design and retrofit methods for blast load mitigation – A state-of-the-art review”, Engineering Structures, 190, 189–209.

             doi: 10.1016/j.engstruct.2019.03.088

[15]     C. Zhang, G. Gholipour, and A. A. Mousavi, (2019), “Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading”, Eng. Struct., 181, 124–142.

             doi: 10.1016/j.engstruct.2018.12.014

[16]     S. V Chaudhari and M. A. Chakrabarti, (2012), “Modeling of concrete for nonlinear analysis Using Finite Element Code ABAQUS”, International Journal of Computer Applications (0975 – 8887), 44(7), 14–18.

             Doi: 10.5120/6274-8437

[17]     D. Zhang et al., (2013), “Experimental study on scaling of RC beams under close-in blast loading”, Eng. Fail. Anal., 33, 497–504.

             doi: 10.1016/j.engfailanal.2013.06.020

[18]     S. Liu et al., (2019), “Blast responses of concrete beams reinforced with GFRP bars: Experimental research and equivalent static analysis”, Compos. Struct., 226.

             doi: 10.1016/j.compstruct.2019.111271

[19]     Tran, V. L., Thai, D. K., & Kim, S. E. (2019), "Application of ANN in predicting ACC of SCFST column. Composite Structures", 228, 111332.

             https://doi.org/10.1016/j.compstruct.2019.111332

[20]    Y. Qu, X. Li, X. Kong, W. Zhang, and X. Wang, (2016), “Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading”, Eng. Struct., 128, 96–110.

             doi: 10.1016/j.engstruct.2016.09.032

[21]    W. Wei, Y. lei Zhang, J. jun Su, Y. Liu, and F. lei Huang, (2022), “Modification of SDOF model for reinforced concrete beams under close-in explosion”,  Def. Technol.

             doi: 10.1016/j.dt.2022.01.012

[22]    B. Rao, L. Chen, Q. Fang, J. Hong, Z. xian Liu, and H. bo Xiang, (2018), “Dynamic responses of reinforced concrete beams under double-end-initiated close-in explosion”, Def. Technol., 14(5), 527–539.

             Doi: 10.1016/j.dt.2018.07.024

[23]    Y. Liu, J. bo Yan, and F. lei Huang, (2018), “Behavior of reinforced concrete beams and columns subjected to blast loading”, Def. Technol., 14(5) 550–559.

             Doi: 10.1016/j.dt.2018.07.026

Statistics
Article View: 291
PDF Download: 567
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.