[1] Housing and Building National Research Center, (2016), "Egyptian specification for blast resistant buildings", SPEC 905. Cairo.
[2] American Concrete Institute (ACI) 370r-14, (2014), "Report for the design of concrete structures for blast effects".
[3] Unified Facilities Criteria (UFC) 3-340-02, (2008), "Structures to resist the effects of accidental explosions", U.S. Department of Defense (DoD).
www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc
[4] Zhao, L., Hao, Y., Wang, Q., Yang, C., Yao, H., Jia, X., (2023), “Damage Zone of the Reinforced Concrete Beam under Rectangular Explosive Contact Explosions”, Buildings, 13, 1403.
https://doi.org/10.3390/buildings13061403
[5] Gomes, G.d.J., Lúcio, V.J.d.G., Cisma¸siu, C., Mingote, J.L., (2023), “Experimental Validation and Numerical Analysis of a High-Performance Blast Energy-Absorbing System for Building Structures”, Buildings, 13, 601.
https://doi.org/10.3390/buildings13030601
[6] Robert Laszlo, Emilian Ghicioi, Florea Dinu, Calin Neagu, Dan Dubina, (2024), “Passive blast protection of buildings by ductile steel-based envelopes”, MATEC Web of Conferences, 389, 00040.
https://doi.org/10.1051/matecconf/202438900040
[7] Chaozhi Yang, Zhengxiang Huang, Xin Jia, Wei Shang, Taian Chen, (2024), “Analytical model for predicting localized damage in RC beams under contact explosion”, International Journal of Impact Engineering, 185, 104870.
https://doi.org/10.1016/j.ijimpeng.2023.104870
[8] Chuanjing Li, Hassan Aoude, (2023), “Behavior of UHPFRC-retrofitted RC beams with varying strengthening configurations under single and repeated blast loading”, Cement and Concrete Composites, 142, 105180.
https://doi.org/10.1016/j.cemconcomp.2023.105180
[9] Yu Liu, Hong Hao, Yifei Hao, (2023), “Damage prediction of RC columns with various levels of corrosion deteriorations subjected to blast loading”, Journal of Building Engineering, 80, 108019.
https://doi.org/10.1016/j.jobe.2023.108019
[10] A. Abbas, S. Arshad, G. Mohanned, Z. Ayman, I. Teghreed, A. Ali, A. Ibrahim, (2023), “Enhancement of RC T-beams toughness using laced stirrups reinforcement for blast response predictions”, Structural Concrete, 24(3), 3839-3856.
[11] Y. Temsah, A. Jahami, J. Khatib, and M. Sonebi, (2018), “Numerical analysis of a reinforced concrete beam under blast loading”, MATEC Web Conf., 149, p. 02063.
doi: 10.1051/matecconf/201814902063
[12] V. Karlos, G. Solomos, and B. Viaccoz, (2013), "Calculation of blast loads for application to structural components", Luxembourg: Publications Office of the European Union, European Laboratory for Structural Assessment.
doi:10.2788/61866
[13] B. Samali, G. McKenzie, C. Zhang, and E. Ancich, (2018), “Review of the basics of state of the art of blast loading”, Asian J. Civ. Eng., 19(7), 775–791.
doi: 10.1007/s42107-018-0063-y
[14] H. Draganić, G. Gazić, and D. Varevac, (2019), “Experimental investigation of design and retrofit methods for blast load mitigation – A state-of-the-art review”, Engineering Structures, 190, 189–209.
doi: 10.1016/j.engstruct.2019.03.088
[15] C. Zhang, G. Gholipour, and A. A. Mousavi, (2019), “Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading”, Eng. Struct., 181, 124–142.
doi: 10.1016/j.engstruct.2018.12.014
[16] S. V Chaudhari and M. A. Chakrabarti, (2012), “Modeling of concrete for nonlinear analysis Using Finite Element Code ABAQUS”, International Journal of Computer Applications (0975 – 8887), 44(7), 14–18.
Doi: 10.5120/6274-8437
[17] D. Zhang et al., (2013), “Experimental study on scaling of RC beams under close-in blast loading”, Eng. Fail. Anal., 33, 497–504.
doi: 10.1016/j.engfailanal.2013.06.020
[18] S. Liu et al., (2019), “Blast responses of concrete beams reinforced with GFRP bars: Experimental research and equivalent static analysis”, Compos. Struct., 226.
doi: 10.1016/j.compstruct.2019.111271
[19] Tran, V. L., Thai, D. K., & Kim, S. E. (2019), "Application of ANN in predicting ACC of SCFST column. Composite Structures", 228, 111332.
https://doi.org/10.1016/j.compstruct.2019.111332
[20] Y. Qu, X. Li, X. Kong, W. Zhang, and X. Wang, (2016), “Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading”, Eng. Struct., 128, 96–110.
doi: 10.1016/j.engstruct.2016.09.032
[21] W. Wei, Y. lei Zhang, J. jun Su, Y. Liu, and F. lei Huang, (2022), “Modification of SDOF model for reinforced concrete beams under close-in explosion”, Def. Technol.
doi: 10.1016/j.dt.2022.01.012
[22] B. Rao, L. Chen, Q. Fang, J. Hong, Z. xian Liu, and H. bo Xiang, (2018), “Dynamic responses of reinforced concrete beams under double-end-initiated close-in explosion”, Def. Technol., 14(5), 527–539.
Doi: 10.1016/j.dt.2018.07.024
[23] Y. Liu, J. bo Yan, and F. lei Huang, (2018), “Behavior of reinforced concrete beams and columns subjected to blast loading”, Def. Technol., 14(5) 550–559.
Doi: 10.1016/j.dt.2018.07.026