• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Abdalhafez, M., AbdelDaiam, I., E. H. Eltaib, M., Abdelrahim, M. (2024). Enhanced Detection and Classification of Underwater Objects using ROV and Computer Vision. JES. Journal of Engineering Sciences, 52(2), 73-86. doi: 10.21608/jesaun.2024.257582.1296
Mahmoud Abdalhafez; Ibrahim M H AbdelDaiam; Mohamed E. H. Eltaib; Mahmoud Abdelrahim. "Enhanced Detection and Classification of Underwater Objects using ROV and Computer Vision". JES. Journal of Engineering Sciences, 52, 2, 2024, 73-86. doi: 10.21608/jesaun.2024.257582.1296
Abdalhafez, M., AbdelDaiam, I., E. H. Eltaib, M., Abdelrahim, M. (2024). 'Enhanced Detection and Classification of Underwater Objects using ROV and Computer Vision', JES. Journal of Engineering Sciences, 52(2), pp. 73-86. doi: 10.21608/jesaun.2024.257582.1296
Abdalhafez, M., AbdelDaiam, I., E. H. Eltaib, M., Abdelrahim, M. Enhanced Detection and Classification of Underwater Objects using ROV and Computer Vision. JES. Journal of Engineering Sciences, 2024; 52(2): 73-86. doi: 10.21608/jesaun.2024.257582.1296

Enhanced Detection and Classification of Underwater Objects using ROV and Computer Vision

Article 6, Volume 52, Issue 2, March and April 2024, Page 73-86  XML PDF (931.58 K)
Document Type: Research Paper
DOI: 10.21608/jesaun.2024.257582.1296
View on SCiNiTO View on SCiNiTO
Authors
Mahmoud Abdalhafez email 1; Ibrahim M H AbdelDaiam2; Mohamed E. H. Eltaib3; Mahmoud Abdelrahimorcid 4
1master’s degree, Department of Mechatronics and Robotics Engineering, Assiut University
2Professor, Department of Mechanical engineering design and production, Assiut University
3Associate professor, Department of Mechanical Engineering, Kafrelsheikh University
4Associate professor, Department of Mechatronics and Robotics Engineering, Assiut University
Abstract
Among the various challenges in underwater exploration, the identification and classification of objects, especially metallic items, hold significant importance in diverse contexts. This paper introduces a comprehensive algorithmic framework leveraging ROVs and computer vision to detect and classify metallic objects in aquatic environments. The Experimental Design section outlines the multi-step process employed for underwater object detection using ROVs. The algorithm undergoes image enhancement, YOLOv3-based object detection, and CNN-based object classification. The dataset used for training and testing comprises a diverse set of underwater scenes with varying illumination, object sizes, and background complexities. The Results and Analysis section presents the performance evaluation of the integrated algorithm. Standard metrics for object detection, including Intersection over Union (IoU), precision, recall, and F1 score, are utilized. The algorithm demonstrates high accuracy in detecting various metallic objects. The comparative analysis of precision, recall, and F1 score across different classes further validates the algorithm's effectiveness in identifying and classifying specific objects underwater.
Keywords
Underwater Object Detection; Computer Vision; Remotely Operated Vehicles (ROVs); Metal Object Recognition
Main Subjects
Mechanical, Power, Production, Design and Mechatronics Engineering.
References
[1]     L. Zhang, C. Li, and H. Sun, “Object detection/tracking toward underwater photographs by remotely operated vehicles (ROVs),” Future Generation Computer Systems, vol. 126, pp. 163–168, Jan. 2022, doi: 10.1016/j.future.2021.07.011.

[2]     F. Peng, Z. Miao, F. Li, and Z. Li, “S-FPN: A shortcut feature pyramid network for sea cucumber detection in underwater images,” Expert Syst Appl, vol. 182, 2021, doi: 10.1016/j.eswa.2021.115306.

[3]     M. S. Asyraf, I. S. Isa, M. I. F. Marzuki, S. N. Sulaiman, and C. C. Hung, “CNN-based YOLOv3 Comparison for Underwater Object Detection,” Journal of Electrical & Electronic Systems Research, vol. 18, no. APR2021, 2021, doi: 10.24191/jeesr.v18i1.005.

[4]     Jiao, P., Ye, X., Zhang, C., Li, W., & Wang, H. (2023). Vision‐based real‐time marine and offshore structural health monitoring system using underwater robots. Computer‐Aided Civil and Infrastructure Engineering.

[5]     A. Mahavarkar, R. Kadwadkar, S. Maurya, and S. Raveendran, “Underwater Object Detection using Tensorflow,” ITM Web of Conferences, vol. 32, 2020, doi: 10.1051/itmconf/20203203037.

[6]     C. Fu et al., “Rethinking general underwater object detection: Datasets, challenges, and solutions,” Neurocomputing, vol. 517, 2023, doi: 10.1016/j.neucom.2022.10.039.

[7]     H. T. Nguyen, E. H. Lee, C. H. Bae, and S. Lee, “Multiple object detection based on clustering and deep learning methods,” Sensors (Switzerland), vol. 20, no. 16, 2020, doi: 10.3390/s20164424.

[8]     Z. Wang, H. Chen, H. Qin, and Q. Chen, “Self-Supervised Pre-Training Joint Framework: Assisting Lightweight Detection Network for Underwater Object Detection,” J Mar Sci Eng, vol. 11, no. 3, 2023, doi: 10.3390/jmse11030604.

[9]     S. Xu, M. Zhang, W. Song, H. Mei, Q. He, and A. Liotta, “A systematic review and analysis of deep learning-based underwater object detection,” Neurocomputing, vol. 527. 2023. doi: 10.1016/j.neucom.2023.01.056.

[10]   X. Yang, S. Samsudin, Y. Wang, Y. Yuan, T. F. T. Kamalden, and S. S. N. bin Yaakob, “Application of Target Detection Method Based on Convolutional Neural Network in Sustainable Outdoor Education,” Sustainability (Switzerland), vol. 15, no. 3, 2023, doi: 10.3390/su15032542.

[11]   A. Mathias, S. Dhanalakshmi, R. Kumar, and R. Narayanamoorthi, “Deep neural network driven automated underwater object detection,” Computers, Materials and Continua, vol. 70, no. 3, 2022, doi: 10.32604/cmc.2022.021168.

[12]   S. Fayaz, S. A. Parah, and G. J. Qureshi, “Underwater object detection: architectures and algorithms – a comprehensive review,” Multimed Tools Appl, vol. 81, no. 15, pp. 20871–20916, Jun. 2022, doi: 10.1007/s11042-022-12502-1.

[13]   S. Zhao, J. Zheng, S. Sun, and L. Zhang, “An Improved YOLO Algorithm for Fast and Accurate Underwater Object Detection,” Symmetry (Basel), vol. 14, no. 8, p. 1669, Aug. 2022, doi: 10.3390/sym14081669.

[14]   F. Han, J. Yao, H. Zhu, and C. Wang, “Underwater Image Processing and Object Detection Based on Deep CNN Method,” J Sens, vol. 2020, pp. 1–20, May 2020, doi: 10.1155/2020/6707328.

[15]   H. Yang, P. Liu, Y. Hu, and J. Fu, “Research on underwater object recognition based on YOLOv3,” Microsystem Technologies, vol. 27, no. 4, pp. 1837–1844, Apr. 2021, doi: 10.1007/s00542-019-04694-8.

[16]   G. Coro and M. Bjerregaard Walsh, “An intelligent and cost-effective remote underwater video device for fish size monitoring,” Ecol Inform, vol. 63, 2021, doi: 10.1016/j.ecoinf.2021.101311.

[17]   X. Chen, M. Yuan, C. Fan, X. Chen, Y. Li, and H. Wang, “Research on an Underwater Object Detection Network Based on Dual-Branch Feature Extraction,” Electronics (Switzerland), vol. 12, no. 16, 2023, doi: 10.3390/electronics12163413.

[18]   J. Simon et al., “Using automated video analysis to study fish escapement through escape panels in active fishing gears: Application to the effect of net colour,” Mar Policy, vol. 116, 2020, doi: 10.1016/j.marpol.2019.103785.

[19]   M. Zhang, S. Xu, W. Song, Q. He, and Q. Wei, “Lightweight underwater object detection based on yolo v4 and multi-scale attentional feature fusion,” Remote Sens (Basel), vol. 13, no. 22, 2021, doi: 10.3390/rs13224706.

Statistics
Article View: 242
PDF Download: 492
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.