[1] Rahmati, O., Yousefi, S., Kalantari, Z., Uuemaa, E., Teimurian, T., Keesstra, S., Pham, T. D. and Tien Bui, D. (2019). Multi-Hazard Exposure Mapping Using Machine Learning Techniques: A Case Study From Iran. Remote Sensing, 11, 1943.
[2] Scown, M. W., Thoms, M. C. and De Jager, N. R. (2015). Floodplain Complexity and Surface Metrics: Influences Of Scale And Geomorphology. Geomorphology, 245, 102-116.
[3] Bonilla-Sierra, V., Scholtes, L., Donzé, F. & Elmouttie, M. (2015). Rock Slope Stability Analysis Using Photogrammetric Data And DFN–Dem Modelling. Acta Geotechnica, 10, 497-511.
[4] Fenta, A. A., Kifle, A., Gebreyohannes, T. and Hailu, G. (2015). Spatial Analysis Of Groundwater Potential Using Remote Sensing And GIS-Based Multi-Criteria Evaluation in Raya Valley, Northern Ethiopia. Hydrogeology Journal, 23, 195.
[5] He, Y., Song, Z. and Liu, Z. (2017). Updating Highway Asset Inventory Using Airborne Lidar. Measurement, 104, 132-141.
[6] Zhang, K., Gann, D., Ross, M., Robertson, Q., Sarmiento, J., Santana, S., Rhome, J. and Fritz, C. (2019). Accuracy Assessment Of ASTER, SRTM, ALOS, AND TDX DEMS For Hispaniola and Implications for Mapping Vulnerability to Coastal Flooding. Remote Sensing of Environment, 225, 290-306.
[7] Li, L., Nearing, M. A., Nichols, M. H., Polyakov, V. O., Guertin, D. P. and Cavanaugh, M. L. (2020). The Effects Of Dem Interpolation on Quantifying Soil Surface Roughness Using Terrestrial Lidar. Soil And Tillage Research, 198, 104520.
[8] Heo, J., Jung, J., Kim, B. and Han, S. (2020). Digital Elevation Model-Based Convolutional Neural Network Modeling for Searching Of High Solar Energy Regions. Applied Energy, 262, 114588.
[9] Bhatta, B., Shrestha, S., Shrestha, P. K. and Talchabhadel, R. (2019). Evaluation and Application of A SWAT Model To Assess The Climate Change Impact On The Hydrology Of The Himalayan River Basin. Catena, 181, 104082.
[10] Amirkolaee, H. A., Arefi, H., Ahmadlou, M. and Raikwar, V. (2022). Dtm Extraction from DSM Using A Multi-Scale Dtm Fusion Strategy Based On Deep Learning. Remote Sensing Of Environment, 274, 113014.
[11] Maune, D. F., Kopp, S. and Zerdas, C. (2007). Digital Elevation Model Technologies And Applications. The Dem Users Manual.
[12] Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The Development And Evaluation of The Earth Gravitational Model 2008 (Egm2008). Journal Of Geophysical Research: Solid Earth, 117.
[13] Milbert, D. G. and Smith, D. A. Converting GPS Height into NAVD88 Elevation with the GEOID96 Geoid Height Model. (1996). GIS LIS-International Conference, 681-692.
[14] Leick, A., Rapoport, L. and Tatarnikov, D. (2015). GPS Satellite Surveying, John Wiley & Sons.
[15] Farah, A., Talaat, A. and Farrag, F. (2008). Accuracy Assessment Of Digital Elevation Models Using GPS. Artificial Satellites, 43, 151-161.
[16] Abdallah, A., Saifeldin, A., Abomariam, A. and Ali, R. (2020). Efficiency of Using GNSS-PPP for Digital Elevation Model (DEM) Production. Artificial Satellites, 55, 17-28.
[17] Abdallah, A. (2016). Precise Point Positioning For Kinematic Applications to Improve Hydrographic Survey. ” Ph.D. dissertation, Univ. of Stuttgart, Stuttgart, Germany.
[18] Hofmann-Wellenhof, B., Lichtenegger, H. and Wasle, E. (2007). GNSS–Global Navigation Satellite Systems: GPS, GLONASS, GALILEO, and More, Springer Science & Business Media.
[19] Li, J., Chapman, M. and Sun, X. (2006). Validation of Satellite-Derived Digital Elevation Models From In-Track Ikonos Stereo Imagery. Ontario Ministry Of Transport, Toronto.
[20] Fisher, P. F. and Tate, N. J. (2006). Causes And Consequences of Error in Digital Elevation Models. Progress In Physical Geography, 30, 467-489.
[21] Hebeler, F. and Purves, R. S. (2009). The Influence Of Elevation Uncertainty on Derivation of Topographic Indices. Geomorphology, 111, 4-16.
[22] Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): A Breakthrough In Remote Sensing of Topography. Acta Astronautica, 48, 559-565.
[23] Werner, M. (2001). Shuttle Radar Topography Mission (SRTM) Mission Overview. Frequenz, 55, 75-79.
[24] Takaku, J., Tadono, T., Doutsu, M., Ohgushi, F. and Kai, H. (2020). Updates Of ‘Aw3d30’alos Global Digital Surface Model with Other Open Access Datasets. The International Archives Of The Photogrammetry, Remote Sensing And Spatial Information Sciences, 43, 183-189.
[25] Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T. and Huber, M. (2017). Generation and Performance Assessment of the Global TANDEM-X Digital Elevation Model. ISPRS Journal Of Photogrammetry And Remote Sensing, 132, 119-139.
[26] Uuemaa, E., Ahi, S., Montibeller, B., Muru, M. and Kmoch, A. (2020). Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TANDEM-X, SRTM, And NASADEM). Remote Sensing, 12, 3482.
[27] Pakoksung, K. and Takagi, M. (2021). Assessment And Comparison of Digital Elevation Model (Dem) Products in Varying Topographic, Land Cover Regions and Its Attribute: A Case Study In Shikoku Island Japan. Modeling Earth Systems And Environment, 7, 465-484.
[28] Hawker, L., Neal, J. and Bates, P. (2019). Accuracy Assessment of the TANDEM-X 90 Digital Elevation Model for Selected Floodplain Sites. Remote Sensing Of Environment, 232, 111319.
[29] Preety, K., Prasad, A. K., Varma, A. K. and El-Askary, H. (2022). Accuracy Assessment, Comparative Performance, And Enhancement of Public Domain Digital Elevation Models (ASTER 30 m, SRTM 30 m, CARTOSAT 30 m, SRTM 90 m, MERIT 90 m, and TANDEM-X 90 m) using DGPS. Remote Sensing, 14, 1334.
[30] Jain, A. O., Thaker, T., Chaurasia, A., Patel, P. and Singh, A. K. (2018). Vertical Accuracy Evaluation Of SRTM-Gl1, GDEM-V2, AW3D30 And CARTODEM-V3. 1 of 30-m Resolution with Dual Frequency GNSS For Lower Tapi Basin India. Geocarto International, 33, 1237-1256.
[31] Marešová, J., Gdulová, K., Pracná, P., Moravec, D., Gábor, L., Prošek, J., Barták, V. and Moudrý, V. (2021). Applicability Of Data Acquisition Characteristics to the Identification Of Local Artefacts in Global Digital Elevation Models: Comparison of The COPERNICUS And TANDEM-X Dems. Remote Sensing, 13, 3931.
[32] El Ashiry, A. and Elkhalil, O. (2024). Vertical Accuracy Assessment for The Free Digital Elevation Models SRTM and ASTER in Various Sloping Areas. Jes. Journal Of Engineering Sciences, 52, 250-268.
[33] Polidori, L. and El Hage, M. (2020). Digital Elevation Model Quality Assessment Methods: A Critical Review. Remote Sensing, 12, 3522.
[34] Fazilova, D., Magdiev, K. and Sichugova, L. (2021). Vertical Accuracy Assessment of Open Access Digital Elevation Models Using GPS. International Journal of Geoinformatics, 17, 19-26.
[35] Ferreira, Z. A. and Cabral, P. (2022). A Comparative Study about Vertical Accuracy Of Four Freely Available Digital Elevation Models: A Case Study In The Balsas River Watershed, Brazil. ISPRS International Journal of Geo-Information, 11, 106.
[36] Cai, C. and Gao, Y. (2013). Modeling And Assessment of Combined GPS/GLONASS Precise Point Positioning. GPS Solutions, 17, 223-236.
[37] Szypuła, B. (2019). Quality Assessment of DEM Derived From Topographic Maps for Geomorphometric Purposes. Open Geosciences, 11, 843-865.
[38] Mashimbye, Z. E., De Clercq, W. P. and Van Niekerk, A. (2014). An Evaluation of Digital Elevation Models (DEMS) for Delineating Land Components. Geoderma, 213, 312-319.
[39] DAAC, L. (2015). The Shuttle Radar Topography Mission (SRTM) Collection User Guide. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center: Sioux Falls, Sd, Usa.
[40] Rabah, M., El-Hattab, A. and Abdallah, M. (2017). Assessment Of The Most Recent Satellite Based Digital Elevation Models of Egypt. NRIAG J Astron Geophys.
[42] Grohmann, C. H. (2018). Evaluation of Tandem-X Dems on Selected Brazilian Sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sensing of Environment, 212, 121-133.
[44] COPERNICUS (2024). Copernicus Global Digital Elevation Models.
[46] Habib, A., Akdim, N., El Ghandour, F.-E., Labbassi, K., Khoshelham, K. and Menenti, M. (2017) Extraction and Accuracy Assessment of High-Resolution Dem and Derived Orthoimages from ALOS-PRISM Data over Sahel-Doukkala (Morocco). Earth Science Informatics, 10, 197-217.
[47] Biswal, S., Sahoo, B., Jha, M. K. and Bhuyan, M. K. (2023). A Hybrid Machine Learning-Based Multi-Dem Ensemble Model Of River Cross-Section Extraction: Implications on Streamflow Routing. Journal of Hydrology, 625, 129951.
[48] Ziari, H., Maghrebi, M., Ayoubinejad, J. and Waller, S. T. (2016). Prediction of Pavement Performance: Application Of Support Vector Regression With Different Kernels. Transportation Research Record, 2589, 135-145.