[1] Al-Haddad, A. H. (2015). Fatigue evaluation of Iraqi asphalt binders based on the dissipated energy and viscoelastic continuum damage (VECD) approaches. Journal of Civil Engineering and Construction Technology, 6(3), 27-50.
[2] Li, J., Zofka, A., & Yut, I. (2012). Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US region. Road materials and pavement design, 13 (2), 249–265.
[3] Moussa, G. S., & Owais, M. (2020). Pre-trained deep learning for hot-mix asphalt dynamic modulus prediction with laboratory effort reduction. Construction and Building Materials, 265, 120239.
[4] Moussa, G. S., & Owais, M. (2021). Modeling Hot-Mix asphalt dynamic modulus using deep residual neural Networks: Parametric and sensitivity analysis study. Construction and Building Materials, 294, 123589.
[5] Rahman, M. M., & Gassman, S. L. (2018). Data collection experience for preliminary calibration of the AASHTO pavement design guide for flexible pavements in South Carolina. International Journal of Pavement Research and Technology, 11(5), 445-457.
[6] Quintus, H. L. V., Darter, M. I., & Mallela, J. (2007). Recommended Practice for Local Calibration of the ME Pavement Design Guide. Draft report to National Cooperative Highway Research Program, Project.
[7] Caliendo, C. (2012). Local calibration and implementation of the mechanistic-empirical pavement design guide for flexible pavement design. Journal of Transportation Engineering, 138(3), 348-360.
[8] Plescan, E. L., & Plescan, C. (2014). Implementation of mechanistic-empirical pavement design guide ME-PDG in Romania. Bull. Transilvania Univ. Braşov, 7(56), 323-329.
[9] Kaya, O. (2015). Investigation of AASHTOWare Pavement ME Design/Darwin-ME TM performance prediction models for Iowa pavement analysis and design (Doctoral dissertation, Iowa State University).
[10] Rahman, M. S., Podolsky, J. H., & Scholz, T. (2019). Preliminary local calibration of performance prediction models in AASHTOWare pavement ME design for flexible pavement rehabilitation in oregon. Journal of Transportation Engineering, Part B: Pavements, 145(2), 05019002.
[11] Islam, S., Hossain, M., Jones, C. A., Bose, A., Barrett, R., & Velasquez Jr, N. (2019). Implementation of AASHTOWare Pavement ME Design Software for Asphalt Pavements in Kansas. Transportation Research Record, 2673(4), 490-499.
[12] El-Badawy, S. M. (2012). Recommended changes to designs not meeting criteria using the mechanistic-empirical pavement design guide. International Journal of Pavement Research and Technology, 5(1), 54.
[13] Kim, S., Ceylan, H., & Heitzman, M. (2005, August). Sensitivity study of design input parameters for two flexible pavement systems using the mechanistic-empirical pavement design guide. In Proceedings of the 2005 mid-continent transportation research symposium, Ames, Iowa
[14] Mohammad, L. N., Kim, M., Raghavendra, A., & Obulareddy, S. (2014). Characterization of Louisiana asphalt mixtures using simple performance tests and MEPDG (No. FHWA/LA. 11/499). Louisiana. Dept. of Transportation and Development.
[15] Aguib, A. A., & Khedr, S. (2016). The mechanistic-empirical pavement design: An Egyptian perspective. In Functional Pavement Design (pp. 933-942). CRC Press.
[16] Sadek, H. A., Masad, E. A., Sirin, O., Al-Khalid, H., Sadeq, M. A., & Little, D. (2014). Implementation of mechanistic-empirical pavement analysis in the State of Qatar. International Journal of Pavement Engineering, 15(6), 495-511.
[17] Khattab, A. M., El-Badawy, S. M., & Elmwafi, M. (2014). Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia. Construction and Building Materials, 64, 360-369.
[18] Alqaili, A. H., & Alsoliman, H. A. (2017). Preparing data for calibration of mechanistic-empirical pavement design guide in central Saudi Arabia. International Journal of Urban and Civil Engineering, 11(2), 248-255.
[19] Masad, E., Kassem, E., & Little, D. (2011). Characterization of asphalt pavement materials in the State of Qatar: A case study. Road Materials and Pavement Design, 12(4), 739-765.
[20] Bayomy, F., & Safwan, K. (2010). Dynamic characterization of egyptian hot mix asphalt concrete for highway pavement design and evaluation. University of Idaho, US-Egypt Cooperative Research, Final Report, 612630.
[21] Elshaeb, M. A., El-Badawy, S. M., & Shawaly, E. S. A. (2014). Development and impact of the Egyptian climatic conditions on flexible pavement performance. American Journal of Civil Engineering and Architecture, 2(3), 115-121.
[22] Aguib, A. A. (2021). Flexible pavement design AASHTO 1993 versus mechanistic-empirical pavement design.
[23] Chehab, G. R., Chehade, R. H., Houssami, L., & Mrad, R. (2018). Implementation initiatives of the mechanistic-empirical pavement design guide in countries with insufficient design input data–the case of lebanon. In Advancement in the Design and Performance of Sustainable Asphalt Pavements: Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures 1 (pp. 147-167). Springer International Publishing.
[24] Ghosh, A., Padmarekha, A., & Krishnan, J. M. (2013). Implementation and proof-checking of mechanistic-empirical pavement design for Indian highways using AASHTOWare Pavement ME Design software. Procedia-Social and Behavioral Sciences, 104, 119-128.
[25] Shakhan, M. R., Topal, A., & ŞENGÖZ, B. (2021). Data collection for implementation of the mechanistic-empirical pavement design guide (MEPDG) in Izmir, Turkey. Teknik Dergi, 32(6), 11361-11380.
[26] Eyada, S. O., & Celik, O. N. (2018). A Plan for the implementation of Mechanistic-Empirical Pavement Design Guide in Turkey. Pertanika Journal of Science & Technology, 26(4).
[27] Transportation Officials. (2008). Mechanistic-empirical pavement design guide: a manual of practice. AASHTO.
[28] Olidis, C., & Hein, D. (2004, September). Guide for the mechanistic-empirical design of new and rehabilitated pavement structures materials characterization: Is your agency ready. In 2004 annual conference of the transportation association of Canada.
[29] H.a.B.N.R. Center, Egyptian Code for Urban and Rural Roads, Road Material and its Tests, Table 2-1-1., 2008, p. p. 101.
[30] General Authority for Roads Bridges and Land Transport (GARBLT),
www.garblt.com.eg.
[31] Khattab, A. 2015. “Dynamic modulus predictive models for superpave asphalt concrete mixtures.” M.Sc. thesis, Mansoura Univ.
[32] El-Badawy, S., Abd El-Hakim, R., & Awed, A. (2018). Comparing artificial neural networks with regression models for hot-mix asphalt dynamic modulus prediction. Journal of Materials in Civil Engineering, 30(7), 04018128.
[33] Alghrafy, Y. M., Abd Alla, E. S. M., & El-Badawy, S. M. (2021). Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste. Construction and Building Materials, 273, 121771.
[34] Aguib, A. A., & Khedr, S. (2016). The mechanistic-empirical pavement design: An Egyptian perspective. In Functional Pavement Design (pp. 933-942). CRC Press.
[35] Bayomy, F., El-Badawy, S., & Awed, A. (2012). Implementation of the MEPDG for flexible pavements in Idaho (No. FHWA-ID-12-193). Idaho. Transportation Dept..
[37] Di Stefano, J. (2004). A confidence interval approach to data analysis. Forest Ecology and Management, 187(2-3), 173-183.