• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
JES. Journal of Engineering Sciences
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 53 (2025)
Volume Volume 52 (2024)
Issue Issue 6
Issue Issue 5
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 51 (2023)
Volume Volume 50 (2022)
Volume Volume 49 (2021)
Volume Volume 48 (2020)
Volume Volume 47 (2019)
Volume Volume 46 (2018)
Volume Volume 45 (2017)
Volume Volume 44 (2016)
Volume Volume 43 (2015)
Volume Volume 42 (2014)
Volume Volume 41 (2013)
Volume Volume 40 (2012)
Volume Volume 39 (2011)
Volume Volume 38 (2010)
Volume Volume 37 (2009)
Volume Volume 36 (2008)
Volume Volume 35 (2007)
Volume Volume 34 (2006)
Tammam, A., Abbas, M., Yousef, K. (2024). An Efficient Fully Bootstrapped RF-to-DC Rectifier for Implantable Biomedical Applications in CMOS Technology. JES. Journal of Engineering Sciences, 52(6), 88-102. doi: 10.21608/jesaun.2024.307000.1358
Asmaa Tammam; Mohamed Abbas; Khalil Yousef. "An Efficient Fully Bootstrapped RF-to-DC Rectifier for Implantable Biomedical Applications in CMOS Technology". JES. Journal of Engineering Sciences, 52, 6, 2024, 88-102. doi: 10.21608/jesaun.2024.307000.1358
Tammam, A., Abbas, M., Yousef, K. (2024). 'An Efficient Fully Bootstrapped RF-to-DC Rectifier for Implantable Biomedical Applications in CMOS Technology', JES. Journal of Engineering Sciences, 52(6), pp. 88-102. doi: 10.21608/jesaun.2024.307000.1358
Tammam, A., Abbas, M., Yousef, K. An Efficient Fully Bootstrapped RF-to-DC Rectifier for Implantable Biomedical Applications in CMOS Technology. JES. Journal of Engineering Sciences, 2024; 52(6): 88-102. doi: 10.21608/jesaun.2024.307000.1358

An Efficient Fully Bootstrapped RF-to-DC Rectifier for Implantable Biomedical Applications in CMOS Technology

Article 2, Volume 52, Issue 6, November 2024, Page 88-102  XML PDF (1.12 MB)
Document Type: Research Paper
DOI: 10.21608/jesaun.2024.307000.1358
View on SCiNiTO View on SCiNiTO
Authors
Asmaa Tammam email orcid ; Mohamed Abbas; Khalil Youseforcid
Electrical Engineering, Faculty of Engineering, Assiut University, Assiut, Egypt
Abstract
This paper introduces a high-efficiency and a wide-frequency band RF-to-DC rectifier with an enhanced voltage conversion ratio (VCR) for implantable biomedical devices. The rectifier utilizes bootstrapped CMOS devices for threshold potential reduction. These devices (NMOS and PMOS) have bootstrapped gates. This is used to reduce the needed RF input voltage which turns rectifying devices ON, effectively adding DC voltages (positive or negative, respectively) to the input RF signal. This allows rectifier devices to conduct at lower input RF voltage levels. The proposed RF-to-DC rectifier circuit is designed and simulated in 180nm CMOS technology. Simulation results show a peak power conversion efficiency (PCE) of 81.3% at RF input power of -12.4dBm, with a load resistor and capacitor of 12 kΩ and 1pF, respectively. With the same loading, the proposed rectifier achieves a peak VCR of 87% at RF peak voltage of 1V. The obtained dynamic range of the proposed circuit is 15.7dB (PCE > 30%) at an input frequency of 402MHz. With an input frequency of 434MHz, the proposed circuit has a PCE of 80.85% at -12.8dBm RF input power, while having a load resistor and capacitor of 12 kΩ and 1pF, respectively. The rectifier achieves 87.14% VCR, and a dynamic range of 15.4dB (PCE>30%).
Keywords
Biomedical implants; bootstrapped rectifier; power conversion efficiency (PCE); wireless power transfer (WPT)
Main Subjects
Electrical Engineering, Computer Engineering and Electrical power and machines engineering.
References
[1]   J. Zhang, R. Das, J. Zhao, N. Mirzai, J. Mercer, and H. Heidari, “Battery‐Free and Wireless Technologies for Cardiovascular Implantable Medical Devices,” Adv Mater Technol, vol. 7, no. 6, p. 2101086, 2022.

[2]   S. Roy, A. N. M. Wasekul Azad, S. Baidya, M. K. Alam, and F. Khan, “Powering Solutions for Biomedical Sensors and Implants Inside the Human Body: A Comprehensive Review on Energy Harvesting Units, Energy Storage, and Wireless Power Transfer Techniques,” IEEE Trans Power Electron, vol. 37, no. 10, pp. 12237–12263, Oct. 2022, Doi: 10.1109/TPEL.2022.3164890.

[3]   L. Yang et al., “Analysis and design of four-plate capacitive wireless power transfer system for undersea applications,” CES Transactions on Electrical Machines and Systems, vol. 5, no. 3, pp. 202–211, 2021, Doi: 10.30941/CESTEMS.2021.00024.

[4]   E. Moisello, A. Liotta, P. Malcovati, and E. Bonizzoni, “Recent Trends and Challenges in Near-Field Wireless Power Transfer Systems,” IEEE Open Journal of the Solid-State Circuits Society, vol. 3, pp. 197–213, 2023, Doi: 10.1109/OJSSCS.2023.3313575.

[5]   H. Bhamra, Y.-W. Huang, Q. Yuan, and P. Irazoqui, “An ultra-low power 2.4 GHz transmitter for energy harvested wireless sensor nodes and biomedical devices,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 206–210, 2020.

[6]   H. K. Abduljaleel, S. Mutashar, and S. K. Gharghan, “Near-Field Wireless Communication and Power Transfer for Biomedical Implants: Applications, Challenges and Solutions,” 2023.

[7]   T. Mehta, S. Dey, and S. Dey, “Near-Field Inductive Wireless Power Transfer at ISM Bands for Biomedical Applications,” in 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), IEEE, 2022, pp. 1439–1443.

[8]   H.-J. Kim, H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi, “Review of near-field wireless power and communication for biomedical applications,” IEEE Access, vol. 5, pp. 21264–21285, 2017.

[9]   K. Detka and K. Górecki, “Wireless Power Transfer—A Review,” Energies (Basel), vol. 15, no. 19, Oct. 2022, Doi: 10.3390/en15197236.

[10] M. Sun et al., “FES-UPP: A Flexible Functional Electrical Stimulation System to Support Upper Limb Functional Activity Practice,” Front Neurosci, vol. 12, Jul. 2018, Doi: 10.3389/fnins.2018.00449.

[11] M. Sun et al., FES-UPP: An advanced functional electrical stimulation system for upper limb rehabilitation. 2017.

[12] R. Alrawashdeh, “Patch antenna based on spiral split rings for bone implants,” Przegląd Elektrotechniczny, vol. 1, pp. 131–136, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:225552822

[13] S. Q. Xiao and R. Q. Li, “Antennas design for implantable medical devices,” in 2015 IEEE International Conference on Computational Electromagnetics, 2015, pp. 61–63. Doi: 10.1109/COMPEM.2015.7052556.

[14] I. A. Shah, M. Zada, and H. Yoo, “Design and Analysis of a Compact-Sized Multiband Spiral-Shaped Implantable Antenna for Scalp Implantable and Leadless Pacemaker Systems,” IEEE Trans Antennas Propag, vol. 67, no. 6, pp. 4230–4234, 2019, Doi: 10.1109/TAP.2019.2908252.

[15] Y. Huang, N. Shinohara, and T. Mitani, “Impedance Matching in Wireless Power Transfer,” IEEE Trans Microw Theory Tech, vol. 65, no. 2, pp. 582–590, 2017, Doi: 10.1109/TMTT.2016.2618921.

[16] Y. Zhaksylyk, “Inductive impedance matching network for Magnetic Resonant Wireless Power Transmission,” 2023.

[17] K. Bazaka and M. Jacob, “Implantable Devices: Issues and Challenges,” Electronics (Basel), vol. 2, pp. 1–34, Mar. 2012, Doi: 10.3390/electronics2010001.

[18] F. Alam et al., “Recent Progress and Challenges of Implantable Biodegradable Biosensors,” Micromachines (Basel), vol. 15, p. 475, Mar. 2024, Doi: 10.3390/mi15040475.

[19] M. A. Akram and S. Ha, “A Differential Rectifier With ${V}_{TH}$ Compensation for High-Frequency RF Inputs,” IEEE Trans Biomed Circuits Syst, vol. 17, no. 4, pp. 653–663, 2023, Doi: 10.1109/TBCAS.2023.3264988.

[20] M. A. Akram and S. Ha, “A 434-MHz Bootstrap Rectifier With Dynamic ${V}_{text{TH}}$ Compensation for Wireless Biomedical Implants,” IEEE Trans Power Electron, vol. 38, no. 2, pp. 1423–1428, 2023, Doi: 10.1109/TPEL.2022.3212090.

[21] H. Kim, B. Rigo, G. Wong, Y. J. Lee, and W.-H. Yeo, “Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring,” Nanomicro Lett, vol. 16, no. 1, p. 52, 2023, Doi: 10.1007/s40820-023-01272-6.

[22] A. Kiourti and K. S. Nikita, “A Review of In-Body Biotelemetry Devices: Implantables, Ingestible, and Injectables,” IEEE Trans Biomed Eng, vol. 64, no. 7, pp. 1422–1430, 2017, Doi: 10.1109/TBME.2017.2668612.

[23] F. Mazzilli, P. E. Thoppay, N. Jöhl, and C. Dehollain, “Design methodology and comparison of rectifiers for UHF-band RFIDs,” in 2010 IEEE Radio Frequency Integrated Circuits Symposium, IEEE, 2010, pp. 505–508.

[24] H. P. D. Paz, V. S. D. Silva, R. Diniz, R. Trevisoli, C. E. Capovilla, and I. R. S. Casella, “Temperature Analysis of Schottky Diodes Rectifiers for Low-Power RF Energy Harvesting Applications,” IEEE Access, vol. 11, pp. 54122–54132, 2023, Doi: 10.1109/ACCESS.2023.3281794.

[25] Q. He et al., “Schottky Barrier Rectifier Based on (100)  $beta$ -Ga2O3 and its DC and AC Characteristics,” IEEE Electron Device Letters, vol. 39, no. 4, pp. 556–559, 2018, Doi: 10.1109/LED.2018.2810858.

[26] M. L. Matias et al., “A comparison of high-efficiency UHF RFID rectifiers using internal voltage compensation and zero-threshold-voltage MOSFETs,” in 2014 IEEE 5th Latin American Symposium on Circuits and Systems, 2014, pp. 1–4. Doi: 10.1109/LASCAS.2014.6820301.

[27] R. Sidhu, J. Ubhi, and A. Agarwal, “CMOS Rectifier Topologies for RF Energy Harvesting: A Review,” Aug. 2020.

[28] K. Kotani, A. Sasaki, and T. Ito, “High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs,” IEEE J Solid-State Circuits, vol. 44, no. 11, pp. 3011–3018, 2009, Doi: 10.1109/JSSC.2009.2028955.

[29] A. S. Almansouri, M. H. Ouda, and K. N. Salama, “A CMOS RF-to-DC Power Converter With 86% Efficiency and −19.2-dBm Sensitivity,” IEEE Trans Microw Theory Tech, vol. 66, pp. 2409–2415, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:19713408

[30] R. la Rosa, D. Demarchi, S. Carrara, and C. Dehollain, “High-Efficiency Reconfigurable CMOS RF-to-DC Converter System for Ultra-Low-Power Wireless Sensor Nodes with Efficient MPPT Circuitry,” Chips, vol. 3, pp. 49–68, Mar. 2024, Doi: 10.3390/chips3010003.

[31] M. H. Ouda, W. Khalil, and K. N. Salama, “Self-biased differential rectifier with enhanced dynamic range for wireless powering,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 5, pp. 515–519, 2016.

[32] S. S. Chouhan and K. Halonen, “Threshold voltage compensation scheme for RF-to-DC converter used in RFID applications,” Electron Lett, vol. 51, Jun. 2015, Doi: 10.1049/el.2015.0445.

[33] M. Kiani, B. Lee, P. Yeon, and M. Ghovanloo, “A Q-Modulation Technique for Efficient Inductive Power Transmission,” IEEE J Solid-State Circuits, vol. 50, no. 12, pp. 2839–2848, 2015, Doi: 10.1109/JSSC.2015.2453201.

[34] M. A. Akram and S. Ha, “A Differential Rectifier with VTH Compensation for High-Frequency RF Inputs,” IEEE Trans Biomed Circuits Syst, vol. PP, Apr. 2023, Doi: 10.1109/TBCAS.2023.3264988.

[35] M. Mahmoud, A. B. Abdel-Rahman, G. A. Fahmy, A. Aliam, H. Jia, and R. K. Pokharel, “Dynamic threshold compensated, low voltage CMOS energy harvesting rectifier for UHF applications,” in 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 2016, pp. 1–4. Doi: 10.1109/MWSCAS.2016.7870052.

[36] A. C. C. Chun, H. Ramiah, and S. Mekhilef, “Wide Power Dynamic Range CMOS RF-DC Rectifier for RF Energy Harvesting System: A Review,” IEEE Access, vol. 10, pp. 23948–23963, 2022, Doi: 10.1109/ACCESS.2022.3155240.

[37] P. Saffari, A. Basaligheh, and K. Moez, “An RF-to-DC Rectifier with High Efficiency Over Wide Input Power Range for RF Energy Harvesting Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 12, pp. 4862–4875, 2019, Doi: 10.1109/TCSI.2019.2931485.

[38] S. S. Hashemi, M. Sawan, and Y. Savaria, “A High-Efficiency Low-Voltage CMOS Rectifier for Harvesting Energy in Implantable Devices,” IEEE Trans Biomed Circuits Syst, vol. 6, no. 4, pp. 326–335, 2012, Doi: 10.1109/TBCAS.2011.2177267.

[39] X. Li, Y. Lu, and R. P. Martins, “A 200 MHz Passive Rectifier with Active-Static Hybrid VTH Compensation Obtaining 8% PCE Improvement,” IEEE Trans Power Electron, vol. 38, no. 5, pp. 5655–5658, 2023, Doi: 10.1109/TPEL.2023.3241095.

[40] M. A. Akram and S. Ha, “A 434-MHz Bootstrap Rectifier with Dynamic ${V}_{text{TH}}$ Compensation for Wireless Biomedical Implants,” IEEE Trans Power Electron, vol. 38, no. 2, pp. 1423–1428, 2023, Doi: 10.1109/TPEL.2022.3212090.

Statistics
Article View: 241
PDF Download: 661
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.